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ABSTRACT

Linguistic typology turns on the distinction between candidates that are optimal under some ranking
and candidates that are never optimal under any ranking: this is the distinction between potential
‘winners’ and perpetual ‘losers’. In this paper we develop necessary and sufficient conditions that
decide the winner/loser status of any candidate without requiring that rankings be examined. To
facilitate the discussion, we formulate Optimality Theory in a way that emphasizes its order-theoretic
underpinnings.

Generalizing the familiar notion of harmonic bounding (Samek-Lodovici 1992, Prince &
Smolensky 1993), we show that a candidate is a loser if and only if it has a nbotmding set
that meets two general conditions. Checking these conditions requires no reference to ranking at all;
it is done on a constraint-by-constraint basis, and the only information needed is the relation on each
constraint between the putative loser and the members of a proposed bounding set for it. Bounding
sets are limited in size: they need be no larger than the constraint set, and will typically be much
smaller. A set of candidates that does not satisfy the bounding set criteria can nonetheless certify a
loser’s status by providing, for each ranking, a candidate that is better than the loser; but any such
set must contain a bounding set. The notion of bounding set thus yields a complete, ranking-free
characterization of loser status.

How is a bounding set to be found? The pursuit of the bounding set leads, by recursive
exclusion of nonbounds, to the construction of a ‘favoring hierarchy’ from the constraint set. The
favoring hierarchy is, we show, equivalent to the ‘target hierarchy’ of Tesar 1995 and Tesar &
Smolensky 1998, and its recursive definition parallels their Recursive Constraint Demotion (RCD)
algorithm. A candidate is a winner if and only if it has a favoring hierarchy that exhausts the
constraint set. An exhaustive favoring hierarchy leads to a ranking on which a candidate is
guaranteed to win, if it wins on any ranking at all. For a loser, the construction of its favoring
hierarchy leaves a residue of constraints that cannot be integrated into the hierarchy and a
corresponding set of refractory candidates that cannot be eliminated in competition with the loser.
From these residual candidates, a bounding set can be readily constructettiioin, éldel maximal
bounding set is identified. The size of the residual set of constraints also leads to a tighter upper
bound on size of a loser’'s minimal bounding sets.

These results provide the analyst with new tools for handling the crucial winner/loser
distinction. They affirm the theoretical cerityaof RCD and its associated construct, the favoring
hierarchy, which originally arose in the context of learning and computational issues, but here proves
to be indispensable for understanding the core structure of the theory. The fully order-theoretic
approach developed here also provides a new perspective on the key notions of bounding, evaluation,
and optimality.
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0. Introduction and Overview

® WINNERSpotential optima: candidates optimal undemeranking,
e Losersall others, thosaeveroptimal under any ranking.
Intrinsic to the theory, the dichotomy between sometime-winners and perpetual-losers emerges
whenever constraints and candidate sets are well-defined: rankings may be free, or limited by meta-
conditions; the candidate set may be generated from a lexical representation, or defined in some
other manner. Thewinners comprise the grammatical universe; thesers populate the
complementary netherworld of the impossible.

Since arguments in favor of any hypothesis must at some point advert to the success of its
predictions, the analyst must be able to characterize, for each candidate set, its winners and its losers.
Less obviously, perhaps, all competitions for optimality may be condoetegemwinners Because
the crucial rankings in a grammar are completely determined by inter-winner relations, losers are
grammatically inert. No ranking argument need ever refeldoea’

It follows that key aspects of the theory have a finitary cast. With a finite number of rankings,
there can be only finitely many winners, or more precisely, grammatically-distinct classes of winners.
(If two or more candidates share optimality on some ranking, they must perform equally well on all
constraints, and are therefore indistinguishable by the constraint set.) Losers, by contrast, may come
in infinite numbers, and often do: licit structures exist that contain any number of epentheses,
adjunctions, and recursive expansions. To be optimal is to be bettalltbtrer grammatically-
distinct members of the candidate set; yet if the winners are known, optimality with respect to some
particular ranking can be conclusively demonstrated from the finite set of winner-winner
comparisons.

If there is value to such finitude, then this result may be interpreted as supporting the basic,
occamite strategy of the theory, which is to avoid stipulationEmds well as in ON, relying on
interaction rather than declaration to explain limits on linguistic foren @ust be allowed to
produce large candidate sets — there being no good reason to set arbitrary numerical bounds on
epentheses, adjunctions, and so on, when such bounds already follow from constraint interaction.
The overall theory nevertheless retains a finitistic character, even in the abstract, since all the
competitive action takes place among the set of potential winners and the legions of losers are
irrelevant.

Every constraint set under OT divides candidates into two very different species:

! Terminological note. In this paper, we will user the term ‘loser’ only to mean ‘candidate that never wins
under any ranking’ and the term ‘winner’ to mean only ‘candidate optimal on some ranking’.
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Learners and analysts, of course, must contend with candidate setsdefites them, and
losers do not declare their status openly. At first glance, it might seem difficult to demonstrate a
candidate’s universal suboptimality. A loser winsmameof then! rankings of a freely-rankable
constraint set of size and checking through such a mass of rankings is not generally practicable.
But a much more direct path is provided by Tesar’'s Recursive Constraint Demotion (RCD) algorithm
(Tesar 1995:74ff, Tesar & Smolensky 1995, 1996ab, 1998, in press). Given a set of pairwise
competitions, each pitting a desirediopjum against a desired suboptimum — a set of elementary
ranking arguments, or ‘mark-data pairs’ in the parlance — RCD is guaranteed to find a ranking that
will render all the desired optima better than their competitors, if such a ranking exists. If RCD fails
to produce a successful ranking, timensuch rankings possible; this means that the procedure can
be used to find losers effectively. Rorconstraints, RCD requires at mospasses to make its
determination.

We will develop our attack on the problem from a different angle, though RCD will re-appear
in the end. We seek a ranking-independent necessary-and-sufficiettiocoiad loser status, one
that depends only on the structure of individual constraints. We begin with the familiar notion of
‘harmonic bounding’ (Samek-Lodovici 1992; Prince & Smolensky 1993:176). A candidate is
harmonically bounded there is another candidate that is (a) at least as good on all constraints, and
(b) better on at least oAe. Although the definition makes no reference to the ranking of constraints,
a harmonically bounded candidate can never win on any ranking:ldgsraTo see this, consider
the competion between such a candidate and its bound. The constraints on which they tie cannot
decide between them; but on all others, and there is at least one, the bound will win; with no
constraints preferring the bounded candidate, ranking cannot come to its aid, and it is a lost cause.
The bounding candidate need not be a winner itself, but its existence nevertheless dooms whatever
it bounds (Prince & Smolensky 1993:95).

Harmonic bounding is a special case, in which the easily-ascertained behavior of a single
candidate, the bound, certifies that another candidate is a loser. Generalizing, we will develop the
notion of a ‘bounding set’, a set of candidates meeting two ranking-independent conditions
analogous to those for simple harmonic bounding, wbadlectivelystifle a loser. The empirical
importance of collective bounding can be seen in a recent study by Tesar (1999). Examining a system
of 10 prosodic constraints that yields a large number of distinct quantity-sensitive stress patterns, he
finds a significant number of losers that are collectively bounded, growing as the forms increase in
length. Examining his data, we find that for bisyllables and trisyllables, simple harmonic bounding
is the norm for losers, but collective bounding becomes important for longer words. Among four-
syllable forms, approximately 3/4 are losers in each candidate set, on average, and of these
approximately 1/6 are collectively bounded. Among the five-syllable forms, nearly 5/8 are losers,
on average, and of these nearly 1/5 are collectively bounded.

We will show that a candidate is a logeand only ifit has a non-null bounding set. (In
classical harmonic bounding, the bounding set has just one element.) We will find that every

2 The language comes from the theory of order (cf. e.g. Davey & Priestley 1990:27), not the theory of
guantification: hence the regular, denominal participle: [ [ bowddAn elemeng is an uppeboundfor

a set of elements S with an ordeon it, if for all xS, p>x. E.g. 10 is an upper bound for {1,2,3} and
similarly O is a lower bound for set of nonnegative integers {0,1,2,...}, etc.
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bounding set must contain a finite bounding set within it —f@onstraints, no more than
candidates are needed to collectively bound a loser. Furthermore, when we examine the most general
notion of a set of candidates witnessing the failure of a loser — a ‘covering set’ that contains, for
each ranking, an element beating the loser — we will see that any such covering set must contain
within it a bounding sets defined here. These results show that the bounding set construction
completely answers the request for a finitistic, ranking-independent guarantee of loser status.

Verifying that a given collection of candidates is indeed a bounding set requires nothing more than
checking it against each constraint. Exhibiting a non-null bounding set for a candidate is a quick and
rigorous proof of its perpetual suboptimality. But how can such a bounding set be found? The
obvious direct attack has power-set combinatorics: it is taxing, even for a relatively small candidate
set, to check all one-element subsets, all two-element subsets, ... up to one short of the size of the
candidate set at hand, or the number of constraints, whichever is smaller.

We therefore pursue a complementary line, seekiagdindethose candidates which cannot
possibly be in the bounding set. The key observation is this: if the candidate in question is at least
as good as any other candidatea constraint, then any potential members of its bounding set must
do equally well. All elements in the candidate set that do worse can be eliminated from
consideration. (This follows from the definition of bounding set presented in 82.1 below.) It is
terminologically useful to be able to refer concisely to the property of ‘being the best’; let us say that
a constraint ‘favors’ those members of a given set of candidates which have the fewest violations,
those which perform as well as or better than any other members of the set under consideration.
Favoringis highly relative and depends entirely on the constitution of the set of candidates at hand.
For example, @seT will favor even such a candidate .aso.if it is the only member of the set of
candidates, or if all the other members of the set have even more onsetless syllables. Situations like
this, where success is not the same as satisfaction, arise commonly when constraints are dominated.

To implement the strategy of exclusion, we recursively construct a ‘favoring hierarchy’ for
the candidate whose winner/loser status we wish to assess. (Here we preview the construction; below
we explore its details.) The first step is to collect all the constraints which favor the targeted
candidate: these we set aside as the first rank or stratum of the Favoring Hierarchy. We then gather
the set of candidates which are uniformly favoredlbshe constraints in this first stratum, thereby
eliminating disfavored non-bounds; these are precisely the candidates that survive evaluation by the
first stratum. We next turn our attention to the behavior of this new, reduced set of candidates with
respect to the remaining constraints (should there be any). The procedure is recursively repeated. We
collect those constraints that now favor the targeted candidate in the context of the reduced candidate
set; these form a second stratum. Once more we cull the set of candidates, gathering those favored
by all the constraints in the second stratum, which again excludes non-bounds. The procedure
continues until either (a) all constraints have joined the Favoring Hierarchy, or (b) a dead-end is
reached, in which none of the remaining constraints favors the targeted candidate. In the first case,
the candidate is a winner, a potential optimum; in the second case, it is a loser and, by virtue of the
successful recursive exclusion of non-bounds, the surviving, non-excluded candidates provide us
with the material to construct the non-null bounding set we have been seeking. (Those surviving
candidates that are better than the loser on some remaining constraint form a bounding set, as we will
see below.)



The recursive construction of the favoring hierarchy derives from bounding set considerations
and uses a selection procedure based on the order-structure imposed by constraints. Although Tesar’s
RCD is motivated by learning considerations and manipulates violation patterns rather than order
relations, we will see in 83.2 below that it is precisely equivalent to our construction. The Favoring
Hierarchy is exactly the stratified ‘target’ hierarchy produced by CD algorithms, with each constraint
placed as high as it can be; and the steps of the recursive definition of the Favoring Hierarchy can
be seen to parallel the steps of classic RCD (83.2.2). These results confirm that the RCD procedure
is more than a strategem, useful to learners, for efficiently cutting through the tangle of disjunctive
possibilities entailed by a set of ranking arguments. The notions involved in RCD turn up
unavoidably in analysis of issues central to the theory, even in its most abstract form, and the order-
theoretic perspective we advocate here provides a conceptual vantage on RCD that illuminates its
basic properties.

Because the claims offered here are not alwaysous and typically cannot be justified by
citing examples, it is ecessary to demonstrate their validity. We take the occasion to develop
Optimality Theory from the ground up in purely order-theoretic terms: Wéhmk of a constraint
in terms of the order it imposes on the candidate set. This notion is implicit in the violation-calculus;
making it explicit will shed light on the structure of the theory and yield a useful perspective on
bounding and on RCD. Working from the observation that active conssanm&the candidate
set, we will also view a constraint atuactionfrom candidate sets to candidate sets. This will allow
us to view the construction of constraint hierarchies as function composition (in this we are
anticipated by Karttunen (1998) ), emphasizing the notional continuitynstraintandconstraint
hierarchy,

We begin (81) by establishing that relations among the set of potential winners fully
determine a ranking. We move on to state and explore the bounding set conditions (82), and address
its relation to the RCD after characterizing the notionsooftraintandoptimality (§3). We then
lay the formal groundwork (84) and establish our main propositions in detail (85).

1. Winners and Ranking

A ranking argument compares a desired optimum against a competitor, yielding conditions which
ensure that the desired optimum fares better than that competitor on the constraint hievarghy.
constraint preferring the suboptimal competitor must be dominated by some constraint preferring
the desired optimunBut if the desired optimum is to be optimal, it must survive comparison not
just with one competitor but witaveryother candidate. Finding the conditions that guarantee a
candidate’s optimality will in general require reasoning from a number of pairwise competitions.

3 Karttunen’s broader argument must, however, be viewed with skepticism. Failing to distiugugsirison

from counting he advances the curious assertion that the only difference between rule-package serialism and
OT is that OT requires unlimited counting. (OT requires no counting.) Karttunen also seems to be arguing
that because rule-package serialism and OT both call on notiordeafthey must be somehow equivalent

— as if all theories using similar formal notions were indistinguishable.
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None of these comparisons need be \aiers however, because of the following fact: a
candidate is optimal on a given ranking if and only if on that ranking it is at least as good as the
potential winneramong its candidate set.

Optimal status straighforwardly implies survival against all other winners, because
optimality implies success against everything. To see that the implication holds in the other direction,
assume that on the given ranking, our desired optimum is at least as good as all candidates that are
optimal onsomeranking (‘survives against the winners’). But among that setiohersis a
candidate» that is optimal on the very ranking we are interested in. Since our desired optimum, by
assumption, is as good as or better than any of the winners, ii®ither does just as well ason
the ranking at hand. (It cannot be strictly better thabecause nothing is.) In any case, it is optimal.
The following proposition records this finding:

(2)Proposition. Determination of Ranking by Winners.

LetX be a set of constraints, K a set of candidates. Let Xy (Be the winners in K, the set
of candidates that are optimal for some allowed rankir aind letwekK.

Thenw is optimal for any ranking R & iff w is as good as or better theweryelement of
W(K,X) on the ranking R.

Proof: Along the lines of the discussion in the text. See 85.

The utility of the poposition is quite general: it holds regardless of whether there are various
extraneous conditions that limit the allowed rankings on the constraint set, and it holds over any
constraint set, no matter how chosen. It also shows that, given a set of grammatically-distinct
candidates, a finite number of comparisons — those with the other winners— is sufficient to
establish a candidate’s optimal or suboptimal status.

We conclude by noting that only a very proper subset of relations among potential winners
need be examined, in the usual case. At the outermost limit, if we limit attention to grammatically
distinct candidates, so that we have one optimum per ranking, there can be at distnct
winners withn constraints irk. But a totally ordered set of constraints can be ranked byl
optimum-suboptimum comparisons, one for each ranking-adjacent pair. At the worst, if we proceed
in an inefficient way that leads us to accumulate one comparison for each pairwise ranking relation
among the constraints, we need amliy-1)/2 such comparisons (cf. the data-complexity limits on
the algorithms of Tesar 1995).

* As an example, consider the following three constraint system. Each constraint recognizes 3 levels of
violation; we use numerals to symbolize the 6 candidates we need to give distinct optimum to each of the 3!
possible rankings. Constraint A: {1,2}>{3,4}>{5,6}. Constraint B: {3,6}>{1,5}>{2,4}; Constraint C:
{4,5}>{2,6}>{1,3}. A moment’s calculation show that all candidates are winners. But if, for example, we
want 1 to be optimal, we need merely note th& (so B>>C) and 43 (so A>>B), getting a total ranking

with only 2 comparisons, the absolute minimum possible.
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2. Harmonic Bounding and Beyond

In this section, we show how the notiorhafmonic boundingan be generalized to provide a full,
ranking-independent account of the conditions under which a candidate fails to be optimal under any
ranking. The context of the inquiry, here as elsewheiteba/set quite broadly. We will think of a

setof candidatess any collection of candidatess@nstraint setis any collection of constraints.
Linguistic theories and subtheories will impose considerable additional structure. For example, even
the notion ‘candidate’ is quite complex in practice: a candidate in current phonology is not a form
but amappingbetween an input and an output, with correspondence relations of various kinds
between them that are subject to evaluation. From our vantage, though, ‘candidate’ is an atomic,
unanalyzed notion. Our goal is to achieve results that will apply to any system that uses the very
general notions under analysis here.

2.1 Collective Harmonic Bounding

An important and easily detectable kind of loser is a candidate tranhmnically boundetly some
other single candidate.

(2) Harmonic Bounding. A candidateeK is harmonically boundedelative to a constraint sEt
if there exists a candidageK meeting two conditions:

e Strictness f is strictly better thaa on at least one constraintih

» Weak Bounding B is at least as good a®n every constraint i.

As noted above, no harmonically bounded candidate can ever be optimal. The bound need not even
be a winner.

Terminological note. It is useful to agree on some language to refer to the key relations that show
up repeatedly in bounding theory. Constraints and constraint hierarchies alike determine whether a
candidatew is better thaz, which we can writex>z, or worse thamz, which we can write>w. If
o is neither better nor worse tharthen we cannot writey' = Z because this means thais z. We
need to say, more clumsily, thatis order-equivalent tg, which we notate as~z. If w is at least
as good ag, we writew>z, meaningbetter than or order-equivalent o’
We will say thato is a ‘bound’ or ‘weak bound’ fazif b=z If b>z we will say that b is a
strict bound for Z. For b>z, we will also sometimes simply $elyeatsz.

Exemplification. The character of these abstract conditions can be usefully examined in concrete
examples. Let us focus first on a simple case involving a three member candidatk,geird{d a

> This is an extension of the standard usage, which defines bounds for sets rather than for single elements.
In Appendix B we show that, for our purposes, the notiostoict bound for a set of elements’ should be
defined like thisb is a strict bound for S if is a weak bound for all elements of S and a strict bound for at
least one of them. For a unit set {z}, this gives the same result as the aboimdediristrict bound for an
element'.



two-member constraint set. The entire factorial typology is presented below. Carmlidate
harmonically bounded:

(3) Harmonic Bounding. Candidatasndb are potential winnerg,is a loser.

C,>>G, G G G>>G G
= a * a *
b * b
z * * 7 x

Scrutiny of the tableaux reveals that the Iassrharmonically bounded by candidatevhich
beatsz on C, (thereby satisfying ‘strictness’) and shares the same number of violatioms @s
(meeting ‘weak bounding’).

The effect can be seen much more clearly if we pull out the order structure that is implicit
in the data tableau (3). Each constraint induces a partial order on the candidate set, represented
diagrammatically here with the better candidates above the worse ones, and violation-equivalent
candidates at the same level. To emphasize that we are focusing on the order properties of the
constraint €, we referto itas C”.

(4) Constraints as orders on the candidate set, from ex. (3)

ch ch
a b

| I
b,z a, z

It is obvious from the order diagrams thatz on both constraints (weak bounding) d»a on C,
(strictness). If we represent the competition betvie@ndz in a comparative tableau (Prince 1998),
the bounding property is even more obvious:

()

C, G
b~z b

Here, the cell-entries index the victor in the comparison, if there is one. Cardidat@ever win
against, for there is no cell referring o Generally, if in a comparative tableau foty, there are
occurences of but none ofy, theny can never win on any ranking.

Simple harmonic bounding is not the end of the story, for there are losers which are thwarted
by a combination of competitors. Consider (6) below, which imposes a minor variation on our



example. Candidatesandb are potential winners, armds a loser, but is harmonically bounded
by neithera norb.

(6) Collective Bounding

C,>>G, G G G>>G G G
= a . a .
b - = b -
. x x . x x

Once again the situation is considerable clarified when we pull out the order structure that follows
from the patterns of violation:

(7) Order Structure implicit in ex. (6).

ch ch
a b
| I
z ya
| I
b a

Candidatez is never in the topmost stratum of any constraint. Hence, whatever ranking is chosen,
zis beaten right away at the highest ranked constraint.

The comparative tableaux tell the same story, albeit somewhat more indirectly than before:

8
C, G,
z~a a y4
z~b Z b

Notice that there is ncolumnin whichzis the only candidate that appears: candid&eherefore
not in the topmost order stratum of any constraint: no constaaiotsz. This means that either C
or C,, when in first position in the hierarchy, will eliminate candidatéotice that € favora, as
can seen by comparirggwith its competitors—



9)

C G,
a~b a b
a~z a y4

Similarly, C, favord. These affinities are perhaps even more clearly reflected in the order diagram
(7), wherea andb occupy the top strata of,C and C , respectively.

From this example, it follows that the setvahnersin K cannot be identified simply by
removing from K every harmonically-bounded candidate. Loserg itkéhe case just examined are
unaffected by this operation. Identifying losers takes more than identifying a single bounding
candidate for each.

To extend the notion of harmonic bounding, we introduce the notibawfding sefor a
candidate. Membership in the bounding set is determined by two conditions that parallel those for
simple harmonic bounding.

(10) Def. Bounding SetA set B=K is a bounding set B(z) foreK relative to a constraint s&k, iff
B has these properties:
« Strictness Every member of B is better than z on at least one constraint in
« Reciprocity. If zis better than some member of B on a certain constraiif then some
other member of B bearon the constraint C.

Strictnesgs the same as for simple harmonic boundiegiprocitygeneralizes the weak bounding
property; it ensures that members of the bounding set protect each other from being eliminated by
the bounded candidate.

When a bounding set contains a single element, we derive simple harmonic bounding. By
Reciprocity, that one bound can never be bettered by the loser on any constraint, for there is no other
member of B to save it. It follows that the bound must be at least as gnodt @l constraints,
which is exactly what Weak Bounding requires. For classical harmonic bounding, then, Reciprocity
is satisfied, vacuously, by the nonoccurence of constraints on which the bound is beaten by the
bounded.

Under collective harmonic bounding both properties hold non-vacuously, as illustrated by
the example discussed above, here repeated for convenience:

® The term ‘reciprocity’ is intended to invoke the defining property of the social compact: ‘you watch my
back, I'll watch yours’. The relation of Reciprocity to weak bounding is examined in Appendix B.

If universally fixed ranking order is imposed on some constrairtisReciprocity must take account
of it. LetCcX be a set of constraints among which ranking is fixed. Reciprocity comes out like this: for any
CeC such thatis better that on G for somddeB(z), there is a constraint«® ranked no lower than;C
and an elemera#cB(z) such thaa is better thaz on G. We will not be further examining such refinements
in the present paper, and ranking should be assumed to be free in the constraint sets under discussion.

9



(11) Order Structure of ex. (7). B(z) = {a,b}.

ch ch
a b
I I
z z
I I
b a

Candidate z has the bounding set 84&f. Strictness is meta andb beatz on C and ¢,
respectively. Reciprocity is also satisfied: for exampleeatsb on C but is beaten in turn lay
Similarly, z beatsa in C, but is beaten Ry

Although Strictness is obviously needed for bounding, it is perhaps not immediately clear
that Reciprocity cannot be loosened or simplified to look more obviously like Weak Bounding.
Suppose we simply tried to regke Reciprocity with a straightforward kind of weak bounding

property:

(12) Misleadingly Universalized Weak Bounding
For evenfeB, B is at least as good ason every constrainpt z).

This is too strong and fails immediately, since it is not even true of the boundirsgl}en fex.
(11). A second, more plausible attempt might try to loosen the condition on the ‘defending’ member
of the reciprocating dyad:

(13) Pseudo-Reciprocity
If z beatf3€B on a constraint C ($, there is g<B such thay is at least as good as(y>z)
on C.

But the following example shows that there are cases where a candidate has a pseudo-bounding set
that meets Strictness and Pseudo-Reciprocity, yet is still a winner.

(14) Counterexample to Pseudo-Reciprocity

ch ch c
a,b a,c b,c
I I I

c b a

According to the actual definition (10), no bounding set) Ban be formed foa in the
above system: candidates not eligible, because on € is strictly worse than, buta is itself not
strictly worse than some reciprocating partnecf@s required by Reciprocity. Similarly, candidate
b is not eligible, because this pattern is repeated,on C in the relation batevedin From this it
follows thata is a potential winner, and in fagtwins on the two rankings with,C at the bottom.

10



Under Pseudo-Reciprocity, howevanvould be putatively ‘bounded’ by the set B¢}
On constraints C h pseudo-reciprocates for the subordinationafd on G ¢ pseudo-reciprocates
for the subordination df.

The constraints in this example are highly symmetric, and the same arguments can be
repeated with respect to attempts to find bounding setsdaod forc. In each case, Reciprocity
informs us correctly that no nonnull bounding set exists; but Pseudo-Reciprocity delivers up pseudo-
bounding sets for each: thus, each two-candidate sed@4munds the remaining candidate. Such
a high degree of symmetry is not required for demonstrating the incorrectness of Pseudo-Reciprocity;
but in this case, Pseudo-Reciprocity leads to the charming result that every candidate is pseudo-
bounded, so that there are predicted to be no winners at all!

A candidatez may have more than one bounding set, as can be shown by a constraint
hierarchy with a single constraint C in it:

(15) Multiplicity of bounding sets
C/\

N—O— 9

The set B(z)=4,b} satisfies Strictness, because each member beat€. Reciprocity is satisfied
vacuously. But the sets8a} and B’ '={b} also satisfy Strictness and Reciprocity vacuously, and
therefore both qualify as bounding setsZais well.

Unlike B, though, the sets’EBnd B’ areminimat no non-empty strict subset of theirs is
itself a bounding set. Even minimality, then, does not guarantee uniqueness. Thalset 8hows
that the elements of a bounding set need not be winnetsidar loser in (15above with respect
to X={C}, and yet it constitutes a minimal bounding setZor

Note finally that the null set always qualifies as a bounding set, because it vacuously satisfies
Strictness and Reciprocity. For example, in (15) above, the null set is the only available bounding
set for the winnea. (This is, of course, nothing more than a definitional nicety, and a clause
demanding non-nullity could be inserted in the requirements, if desired.)

The bounding set provides us with a powerful tool for identifying losers and winners in a ranking-
independent fashion. In 85 below, we will demonstrate that every loser has a non-null bounding set.

(16) Bounding Theorem For any constraint set and candidate set K, a candidatm K is
suboptimal on every ranking R overiff there is in K a non-empty bounding set B(z) for
z¢eW(K,X) = B(z)*@

The contrapositive version of the theorem provides a condition that identifies winners: a candidate
o is a winner if and only if its sole possible bounding set is null.
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A further issue remains: suppose we have a set of candidates which has the property that for
every ranking, some member of that set is better than a candi@atk this a ‘covering set’ far,
COV(2). The existence of COY¥) guarantees thatis a loser: it provides a witness#s failure on
each ranking. Is this then a fundamentally different way of providing a set of elements thatsblock
hopes for optimality? We will show in 85.2 that it is not: every covering setfioist contain within
it a bounding set far.

(17)Covering Theorem Let COV(zxK be such that for every ranking R Bf there is an element
ccCOV(2), where c istrictly betterthan z on R. Then there is a non-empty se\X8OV(2), where
B(2) is a bounding set fa

As an illustration of the theorem, consider the example below. &ler@s under the ranking
C,>>C,, and wins for G >>C ; candidateloses on either ranking. The covering set COV(z)={a,b}
provides a witness tBs defeat under each ranking, yet it is not a bounding set, since Reciprocity
fails on constraint C , whee>a buthas itself no strict bound. However, the covering set properly
includes the bounding set B={b}, which satisfies both Strictness and Reciprocity.

(18) ch ch
a b, z
| |
b a
|
z

An interesting corollary of the Covering Theorem concerns the set of potential winners,
which by definition constitutes a covering set relative to each loser, and therefore must include a
bounding set for each of them. But the winner-set need not be itself a bounding set! Consider the
example just shown in (18): the satl§ collects all the winners, but does not qualify as a bounding
set forz

2.2 A Bound on Bounding

How big must a bounding set be? If every constrait is strictly binary — divides the candidate
set into just two classes— then any loser must be harmonically bounded in the classical sense, by
a bounding set witjust one member

To see this, consider any bounding set B for an arbitrary #paed select from it a single
element, call ib: we can show thatb} must also constitute a bounding set ZoBecausdeB, it
must meet Strictness and beabtn some constraint; so Strictness is also satisfieddorBy
contrast, the losercannot bedb on any constraint; for if it did, by Reciprocity there would have to
be ayeB, with y>z, and on that constraint we’'d have the candidate grdeb. This is impossible,
because all constraints are assumed to be strictly binary. Therefore we haweall constraints:
this is Weak Bounding, equivalent to Reciprocity on unit bounding sets. The}saeéts both
Strictness and Reciprocity, and is therefore a bounding setderdesired.

12



This result is interesting, but is of rather limited utility, since very few constraints are binary
in the required sense. Observe that most “binary” constraints refer to some aspect of structure — for
example, @sEeTis binarywithin syllables— but candidates are composite and may contain multiple
occurrences of the relevant structural configuration. Over a realistic candidate set, a typical constraint
that is binary on structural units will be n-ary, even infinitary, in the order distinctions it imposes
among candidates.

When we move even to ternary constraints, we can construct examples which need a
bounding set that has the cardinality of the entire constraint set.

(19) Big Bounding Set

o cA cCf ... CA

& 3 3 R

| | | |

z z z z

| | | |

&,...8 a,..a A,pd .. 8,4

Clearly, B(z2)={g ,...,a }, and no subset of B is a bounding set for z. (If;any a is removed from B, then
Reciprocity fails for the other members on C )

But this is the limit: As we will demonstrate in §3.3, no more thanllective bounds are
needed for a constraint setro€onstraints.

3. The Favoring Hierarchy and the Residual Bounding Set

With the ranking-independent Strictness and Reciprocity conditions in hand, it is easy to check
whether a collection of candidates qualifies as a bounding set, and this in turn permits an easy proof
of loser status through the Bounding Theorem (16). But how are fiveltihe bounding set in the

first place? It will hardly be efficient, in general, to sort through every 1-element subset of the
candidate set, every 2-element set, up to the limits imposed by the candidate set or the number of
constraints, checking each possibility for adherence to Strictness and Reciprocity.

The more plausible line of attack is indirect and follows from the character of the Reciprocity
condition. Consider a constraint which favors a suspected loser. (Recall that a constraint is said to
‘favor’ a candidate if no other competitor does better.) To satisfy Reciprocity (vacuously), all
elements of its bounding set must do equally well on that constraint and must also be favored by the
constraint. Candidates that do less well, those not favored, can be eliminated from consideration as
possible members of the bounding set.

Here’s an example, in which constraint C shows the desired structure:

13



(20) Loserz favored on a constraint.

ch ch
a,z a

| |

b b,z

A quick computation shows thatoses on all rankings, and must therefore have a non-null bounding
set. Focusing on C , we see that by Reciprocity, candidzdanotbe in the bounding set far it

is strictly bounded by on C_and yet itself is not strictly bounded there. Constraint C fawpesd

any potential members @f bounding set must also be similarly favored.

This observation leads to a powerful method for constructing a bounding $etioagon,
outlined above in 81. For convenience, we repeat a concise characterization.

Gather all those constraints thiavor the targeted candidate: by Reciprocity, its bounding
set must be drawn from among those candidates that are likewise uniformly favored by these
constraints. The very same reasoning can now be re-applied to the set of potential bounds thus
identified, in the context of the remaining constraints. Pick out from among these constraints those
which favor the targeted candidate within the set of potential bounds; collect those candidates that
are also favored, reject those that are disfavored: as before, the bounding set must be constructed
from the favored ones. Again the reasoning can reapply, recursively, until we reach one of two
possible outcomes: either all constraints in the original constraint set have been accounted for, in
which case the candidate under consideration has a null bounding set; or we reach a point where
none of the residual constraints are favoring. This residue forms a ‘disfavoring system’ for the
candidate, in which case we have a loser on our hands. At the same time, we have also computed the
maximal bounding set for the targeted candidate: this consists of what remains of the recursively
shrunken set of potential bounds, minus those which are not better than the target on some residual,
nonfavoring constraint. (Including these would lead to a failure of Strictness.)

This procedure, which arises from bounding theory considerations, is equivalent to Recursive
Constraint Demotion (RCD: Tesar 1995seq), as we will show below. RCD was developed in the
context of a specific learning problem: how to efficiently adduce a constraint ranking, given a
constraint set and a collection of desired input-output pairings (optimal candidates). RCD, like other
related constraint demotion algorithms, overcomes a computational complexity inherent in the notion
of ‘ranking argument’. Because each ranking argument can yield a disjunction of possible rankings,
a collection of ranking arguments typically amounts to an unwieldy conjunction of disjunctions.
Instead of attempting to untangle the skein of logical possibilities, Constraint Demotion seeks to
home in, more-or-less directly, on a special class of rankings that must exist if the desired set of
optima can be obtained by the constraint set at hand. Unlike certain other Constraint Demotion
algorithms, RCD detects failure quite conspicuously: the procedure will halt when no ranking exists
that is consistent with the set of assumed input-output pairs. It is this property that provides the link
between grammar learning and the problems under investigation here. The centrality of RCD within
the conceptual structure of OT is affirmed by its intimate connection with bounding theory.

In this section, we flesh out our account of the recursive favoring construction. We aim to
provide enough formal development to ensure clarity, though not enough to preclude comprehension.
We reserve many details of proof until 85. We develop a purely order-theoretic characterization of
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OT, working explicitly from the kind of order structure that emerges from the violation calculus in
classical accounts of the theory (e.g. Prince & Smolensky 1993: ch. 5). Formalizing the intuitive idea
that each constraint in the hierarchy ‘shrinks’ the candidate set, we treat constraints as functions from
candidate sets to candidate sets. With these tools, we develop three principal results, each resting on
the previous:

[1] The output of a set of favoring constraints, when faced with a candidate set, is the
intersection of the sets of candidates favored by each constraint (the Favoring
Intersection Lemma, §4.2).

[2] A candidate is a winner iff it has a recursive favoring hierarchy that exhausts the set of
constraints (the Winner/Loser Theorem, 85.1).

[3] The construction of a recursive favoring hierarchy leads us directly to a uniqgue maximal
bounding set as well as to a bound on the available minimal bounding sets (the Maximal
Bounding Set and the Minimal Bounding Set Theorems, 85).

3.1 Background Assumptions: Constraints and Optimality

Here we introduce the basic ideas that support the discussion that follows. We start by briefly
reviewing notions of order theory and go on to define ‘constraint’, ‘constraint hierarchy’, ‘ranking’,
and ‘optimality’.

Order on a set An order is a relation on a set; we are interested in ‘strict’ orders: irreflexixk (
asymmetricX>y = y#X), and transitivexpy & y>z = x>z). The general order relation is often call
‘partial’ because it need not be specified for every pair. Elements not ordered with respect to each
other are said to be ‘noncomparable’; if every pair is comparable, an order is said to be ‘linear’ or
‘total’. A totally ordered (sub)set is a ‘chain’.

We will write (S;O for a set S with an order relation O on it. This explicit notation will be
useful because eadonstraintimposes its own order on the entire universe of candidates, and
therefore on any subset of that universe.

We distinguish between the order imposed by the constraint and the constraint as a
functioning member of a constraint hierarchy. As we have done above, we write C for the order
associated with the constraint C, and we use the ordered-set ndtaGionto refer to the set K as
ordered by C?

When specific elements of K are compared in the order C*, it is tempting to follow standard
usage and writg>.. y, marking the sign >’ with a miniscule reminder of the particular order that
it denotes. To avoid imperspicuities, though, we will always write (x>y;CM)xf@ greater than
(better thany in the C-order’.

The notion ‘maximal element’ in an order is central to OT: a maximal element is an element
than which no other element is greater. (When all the elements in the set are comparable, it is an
upper bound for the entire set.) We use the notatiaxiP;O to denote the set of maximal elements
in the partially-ordered set P. When applied to constraimsK;C”) identifies those candidates
of K thatdo beston C, those which C orders in its top stratum: those favored by C. When K is
unambiguously determined by the context we will shartaxK;C) into C", where T stands for ‘top
stratum’.
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(21) Def. Maximal element ¥xeP, xcmaxP;O < -3JyeP (y>x;0)

Constraints and Order. At the outermost level of generality, an order imposed by constraint is any
form of partial order on candidates in which every subset in a candidate set has a maximal element.
This ensures that each possible set of candidates has a maximal element under every constraint, and
allows us to define what it means to ‘do best’ on a consttraint.

Violation theory yields a restricted class of orders of this type. For any two candidaies
y in some candidate set, we have (x>y;C") — ‘X is better than y on C’ xviflates C less than
y. Two candidates violating a constraintd@he same degreell not be comparable with each other
in the order C*, in the sense that neither is better (>) than the other. Violation theory entalils,
however, that they at@thworse than any candidate violating C less than they dbathdbetter
than any other candidate violating C more. The order C” thus constitstestified hierarchy
S,>S>..>§ , to use the terminology of Tesar 1995. The candidates in each stratum S are unordered
with respect to each other, but ordered with respect to any candidate in a different stratum. The
notion of a stratified hierarchy is perhaps the central notion of order in linguistics, reappearing in
many different guises. The same concept arises, for example, in the theory of stress prominence —
and when we deal with rankings produced by constraint demotion algorithms or the construction of
a Favoring Hierarchy. The notion can be defined variously; here is one way of doing it:

(22) Def. Stratified Hierarchy. A stratified hierarchy is a partially ordered §&t>) in which non-
comparable elements share all order relations.
Va,b P, -(a>b/ b>a)= (a>x< b>x)

Each set of non-comparable elements forms a stratum. For stratunaraatis we will write a=b
for =(a>b V b>a), because in the case of stratified hierarchiéss‘an equivalence relation, a fact
of no little importancé.

Violations and order. To see how these notions play out in practice, consider the constraint C in
(23) below. On the candidate set K={a, b, c, d}, C imposes the stratified hierarchy diagrammed on
the right:

"To see the importance of this condition, consider the set of integers under ordinary ‘>". There is no integer
that ‘does best’ — is greatest — under this ordering.

8 As noted above (§2.1, p.6), it will not do to say simply ‘a=b’, since ‘=" means ‘is the same entity as’.
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(23) Constraint violations and partial order imposed by C on K

C violations
a *
b * % %*
C * % %
d * k% * k% k%

Ccr a>{b,c}>d

Q

o __ T —

With respect to C, the following order relations emerge:

(i) ais better thar, ¢, d and constitutes C’s top stratum

(i) b andc are neither better nor worse than each othbvec: But they share all order
relations: both are worse tharand better thad.

Constraint violations are, of course, relevant only comparatively. Consider how the constraint
C’, with its different violation pattern, treats the same candidate set:

(24) Constraint violations and partial order imposed bgiCK

Cl

o |o

O

d

cn a>{bc}>d
a

I
b, c
I
d

The violations of Cin (24) differ from those of C in (23), but the induced stratified order does not
change at alla is the most harmonic element ahthe worst in both (23) and (24). The constraints

C and Cimpose the same order on these candidates and are entirely equivalent over K. The order
diagram represents this equivalence direttly.

Constraints as functions The candidates favored by a constraint — the most harmonic ones, the
upper bounds for the relevant candidate set, the maximal elements in the constraint’s order — all lie
in the top stratum of the order it imposes. The role of constraint in a hierarchy is to eliminate all

other candidates from the candidate set it faces. A constraint can therefore be understood as a

® Diagram invariance is a good analyst’'s tool for detecting those cases where two differently defined
constraints actually do the same work on a given candidate set..

17



function: given any set of candidates K, it returns the top stratum from K in the imposed order. We
write this out below:

(25) Def. Constraint. A constraint C is a functidR(U) = P(U), from the power set of the universal
set U of candidates into itself, such that for any set of candidatdsiKreturns the top stratum of
K, max(K;C")c K, consisting of all elements in K which are maximal relative to the order C”.
C: P) = PWL)
C(K) = max(K;C")

Crucially, the value of C(K) varies with K. If C" yields the order {a}>{b,c}>{d}, then we have:
C(K)={a} for K={a,b,c,d}, but
C(K)={b} for K={b,d}.
The latter follows becaudebeatdd, (b>d;C"), anch andc are not part of the candidate set under
consideration.

Ranking. A rankingon a set of constrainksis a total order R on that set, determining the order in
which they are to be composed to form a hierarchy. A rankif®j® in the ordered-set notation,

but we will typically refer to a ranking simply as R or some subscripted variant, since the set of
constraints under discussion will be clear. In a minor abuse of terminology, we will also refer via
rankingto the constraint hierarchy that is so ranked.

We will use a concise sequential notation to describe rankings: for A>>B>>C, we will write
[ABC]. It is convenient to work with variables ranging over continuous subsequences of a ranking.
Thus, with H=[AB], we will write R=ABC]=[HC]. Rankings may be null, i.e. contain no
constraints, in which case we write R=@. (We identify the null ranking with the Identity function.)
Throughout, we Wl use letters early in the alphabet for constraints, and letters such as G, H, J, R,
X, Y as variables over rankings and subrankings

Constraint Hierarchy. A constraint hierarchy is simply the functional composition of constraints.

A higher-ranked constraint liesarlier in the application order than a lower-ranked one. For a
ranking R=[AB], we have R(K) = (B\)(K) = B(A(K)).* Intuitively, A gets first whack at initial
candidate set K, and B selects from among the reduced set B(K). The following supplies a general
characterization:

(26) Def. Ranking Composition.For any candidate setJ, and any ranking R=[C .,C ] on a set
of constraintsX={C,,...,C.}, the function R(K) is constructed by composing the constraints in
domination order, starting from the top:

R(K) = (GeoCprp0..0CrC1)(K) = G, (G (. (& (€ (K)D)))-

10 The reversal of left-right visual order between e.g. [ABC] asB-& is a nuisance, but the associated
typography should always make it clear what we're dealing with: brackéenelose constraints listed in
domination order, and functional apparatus, typically parentheses, will mark the functional reading.
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An equivalent definition can be formulated recursively:

(27) Def. Ranking Composition (recursive) For any candidate setd, and any ranking R of a
constraint sekL, the function R(K) is defined as follows:

If R= @, then R(K)=K

If R=[CH], then R(K) = (HC)(K) = H(C(K)).

Observe that when R=[FG], we write R(K) = [FG](K) =o&(K) = G(F(K)).

Optimality. With constraints as functions and constraint hierarchies as compositions of functions,
optimality is easily defined: the set of optima is just R(K), the result of applying the composite
function R to candidate set K.

Def. Optimal. A candidateicK is optimalin some ranking R of a constraint &kiff acR(K).

Remark. A hierarchy is itself @onstraint as the term is defined in (25). A ranking R is a function
from candidate sets to candidate sets; and, as we will show in 84.1 and in Appendix A, there is an
associated order R”, induced by the orders native to the individual constraints of which it is
composed (Prince & Smolenskylsarmonic ordering of form)s and indeed, as expected,
R(K)=max(K,R"). Thus a hierarchy is actually a favoring constraint for its optima.

Exemplification. To show how the functional conception works, let's examine the following two-
constraint ranking R=[CD].

(28) Exemplary 2-constraint system

C D ch DA
= a * a,b C
| |
b **! C a
cll * |
b

The operations that identify the winners for R are the same whether we use the above definition or
follow the equivalent violation-comparing procedure on the violation tableaux: first we collect the
most harmonic candidates for C, i.e. C(Kx{. Then we evaluate D with respectttos set of
candidates, and sinegbeats in the order D", we find thatis optimal.

Crucially, the candidate set with respect to which D is evaluated — namely, C(K) — no
longer containg. Candidatec beats botta andb in the C” order on K-in-its-entirety, but the
evaluation is blind to this fact, becauses eliminated at the evaluation of C(K). This pattern of
eliminations and restricted focus, familiar to all practitioners, is exactly what it means to have each
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constraint functionally applied to the value of the next-highest-ranked constraint. In our example,
the relevant sequence of functional applications looks like this:

K={a,b,c}
C(K) = {a,b}
D(C(K)) = D({a,b}) = {a}

Unsurprisingly, constraint re-rankirgua change-in-order-of-composition can affect the set of
winners. Consider the reversed ranking[RC]:

[DCI(K) = (C-D)(K) =C(D(K))
D(K)={c}
C(D(K)) = C({c}}={c}.

In general, the way distinct constraints C and C apply to some set K, of whatever provenance, need
not be the same, and C (K) angd C (K) could even be fully distinct sets, as in the example just cited.
RankingsR =[...€ € ...]and,R =[.,.G C ...] will often, as is commonly observed in practice, serve
up disjoint sets of optima.

3.2 Recursive Favoring and RCD

With the infrastructure in place, we now develop a way to identify the bounding set for a candidate:
if the bounding set is null, we will have produced a (set of) rankings on which our candidate is
optimal; but if the candidate is a loser, we will have found the maximal non-empty bounding set for
it. We define a ‘recursive favoring hierarchy’ that progressively excludes candidates from the
bounding set; we conclude the discussion by showing that this construction is an order-theoretic
equivalent of RCD.

3.2.1 Favoring Hierarchies

The key notion is th&avoring constraintthe OT analog of a constrasutisfiedby a candidate in

a non-OT Boolean theory. Here we restate the definition we have given above: a constraint favors
those candidates that it orders into its top stratum, which are the maximal elements in the set of
candidates the constraint is being applied to.

(29) Def. Favoring Constraint. For any candidate set K, a constraint Ffiavering constrainfor
a in K iff a is @ maximal element of the ordered$&E"). Equivalently,
F is afavoring constrainfor acK iff acF(K).

Let us write.7(a,K,X) for the set ofall favoring constraints foa over a candidate set K and

constraint sek. (We'll write .7 for short whenever K ant are clearly determined by context.)
The set7 has the important property thatvins onall of its rankings. (The constraints in

7 do not conflict.) To see this, note that eaglAreturns a subset of K that includesNo matter
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how these constraint-functions are composed, the favored candidaliebe returned by each
functional application.

Any candidate not at the top of all constraints7inms inevitably a loser, because it is thrown
out as soon as a constraint is evaluated on which it is not favored. It follows that the siehaf op
for a favoring set~is just theintersectionof the top strata of all the constraints#n collecting all
candidates that share withthe top of each constraint i@. Since this is a well-defined entity,
invariant across the possible rankings of .7, we can notate it ag(K). We will call itsmembers
theco-winnersof a in .7(K).

Exemplification. The mini-system below illustrates the favoring property. In it, constraints C and
D treatw as maximal with respect to Kafb,c}. Both therefore qualify as favoring constraints for
o, forming together the favoring set={C, D}.

(30) (ol DA
a, bo b, c,®
| |
C a

Candidaten wins on any ranking of C, D with respect to K, because each ranking maps K into a
subset of K that always includes Similarly for candidate.

The ranking R = [CD] eliminates at C(K), and eliminatea on evaluation of D(C(K)),
yielding the set of optima R(K)®b{w}. The ranking [DC] eliminatea at D(K), c at C(D(K). Either
way, we have the same outcome.

The intersection C(K)D(K)={ b,w} yields the optima for7, with co-winnersa andb.

These considerations lead to the following result:

(31) Favoring Intersection Lemma.Let.7(a,K,X) = {F,,..,F,} be a set of favoring constraints for
acK. Then the set of candidated(K) that win on each and every ranking.#fis given by the
intersection of the sets ma F*) for alli, that is, byn, F.(K).
Z(K) = 0 K(K).
Pf. See (76), 84.1, p. 43.

Here’s another way of putting the result: if the top order-strata in a set of constraints have a non-null
intersection, then the optima for the constraint set are just the members of that intersection, and they
all win over any and all rankings.

The favoring set has two desirable, complementary properties. First, the favored candidate
will always lie among the optima on its favoring set. Second, any members of the bounding set for
the favored candidate must also be found among the optima (by Reciprocity, as discussed above).
In gathering together the constraints in the favoring set, we have not produced a ranking of the whole
set that guarantees optimality, nor have discovered the contents of a bounding set; but we have taken
a step toward both of those goals.
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A further step can now be taken, by essentially repeating the first. Focusing on the set of co-
winners from the first favoring stratum (a reduced version of the original candidate set) and the
residual set of constraints that did not originally favor the targeted candidate (a reduced version of
the original constraint set), we are faced with the same logic as before. Gather all the constraints
from among this reduced constraint set that favor the targeted candidate; gather all the candidates
from the reduced candidate set that survive evaluation by the new favoring set. This second-order
favoring set will have the same key properties as the first: the targeted candidate will be among its
co-winners, as will any members of its bounding set.

The process lends itself to recursive repetition. The outcomdasgoring hierarchyin
which each stratum consists of all the favoring constraints for the targeted candidate, determined
with respect to the co-winners of the preceding stratum. The favoring hierarchy for a candidate
H(o) =(7,...7 ), where7, is the I favoring stratum, can be defined as follows:

(32) Def. Favoring Hierarchy. Let K be any set of candidates includimgand X any set of
constraints. Let7(a,K,X) be the set of favoring constraints F éooverX with respect to K. Then
thefavoring hierarchyH(a) is a stratified hierarchy7,..7,) where each favoring stratum. is a
non-empty set of favoring constraints recursively defined as follows:

Base step: Comments:

K:=K

D)

F,= F (0, K, X)) 1% fav. stratum = set of favoring constraints dasver K and®
Recursive step:

K = -7,(K) Next candidate set = co-winners of current favoring stratum

Y= - S, Next constrainset = current set minus current favoring stratum

F = F(0,K 1, 2001) Next favoring stratum = favoring constraints éoover the new sets of

candidates and constraints

Exemplification. To gain familiarity with the construction of favoring hierarchy via RCD as
construed here, consider the constraintse{A,B,C,D,E} and candidate set Ka{b,cw}, with
order properties shown below. Let us ask whether there exists a stratified higfgedHgr w.

(33) A° B/ cAr DA En
a b, c a, Cp b, c,® a
I I I I I
0 o b a co
I I I
b, c a b

First, we find the favoring set fes over the whole candidate set and the whole constraint set:

F1(0,K,2) ={C, D}
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We then construct the next-generation candidate set from the winnefg for
K=7,(K,) = C(K)nD(K,) = {c,w}

And we calculate the next-generation constraint set:
%,=2 -7,(0,K,2) ={AB,C,D,E} - {C,D} ={A,B,E}

For the second-generation candidate set K anB.ftne second-generation constraint set, we are
looking at the following:

(34) A~ BA En
® C C,®
I I
C (O]

We can now construct the second stratum of the favoring hierarchy from the constraints that favor
o in this context:

7,=7(0,K,Z,) ={A, E}

Nothing butw is left to be a member of the third generation candidate set:
K;=.7,(K) = A(K) n E(K,) ={w}

The third generation constraint set is simply B:
2, =%, - 7(o, K, %,) ={AB,E} - {AE} ={B}

Since B over K rather unsurprisingly favorg K 's only member, we have exhausted our original
constraint sek and arrive at a complete, exhaustive favoring hierarchy for

H(w) =(7.7,7 3 ={C,DHAEXB} )

Remark. The Favoring Intersection Lemma ensures that each favoring strgtisnitself a function

from a set of candidates K to one of its possible subsets, namely that formed by all those members
of K maximal in all constraints o¥; . Therefore, we can extend to favoring strata all the properties
associated with constraints, including that of functional composition. Besides indicating the co-
winners for a single favoring stratugn over a set K as#(K), we can notate the co-winners for a

ranked sequence of favoring strat#; ...7,,) as [7,.7 ,7 4(K), which will have the unique value
73(7,(7,(K))) as per functional composition.
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The example just examined can then be represented in the following three steps, each
summarizing the evaluation of an additional favoring stratum.f@he last step also indicated the
optimal candidates for the whole hierarchy.

0 [7dK) =.71(K) ={c, o}
(i) [7.7]K)  =.7,(7.(K)) ={o}
(i)  [7.7,7d(K) = 73(7, (7:(K))) ={o}

Remark. The construction of the favoring hierarchy may be fruitfully compared with the way
winners are determined in a strictly Boolean constraint-satisfaction theory, one based on
inviolability. There, a candidate is ‘well-formed’ iff it satisfies all constraints. From the order-
theoretic point of view, each Boolean constraint divides the candidate set into two strata, top and
bottom, satisfiers and violators. The well-formed candidates are arrived at by intersecting the tops
of all constraints. If the intersection is empty, there is no output. But in OT, candidates that are not
universally favored can get a reprieve: as long as thesoareconstraints whose intersected tops
contain the candidate in question, we are allowed to proceed onward: we continue the evaluation
over the rest of the constraints, restricting ourselves to the winners of the previous round.

The favoring hierarchy for a candidate decides its winner/loser status. For a winner, the
favoring hierarchy contains all the constraints in the set. Any total ranking of those constraints that
respects the stratum-order will be one in which the winner is optimal. For a loser, the favoring
hierarchy will come up short, leaving out some constraints: the leftover constraints are those
antagonists of the loser that cannot be resolved by ranking. These form a nonempty disfavoring
system for the loser. The following theorem encodes this result:

(35) Winner/Loser Theorem. For a set of candidates K, a constrainseind candidateeK, o
is a winner ovek iff there is a favoring hierarchy for, H(o)= (.7,..7 ), exhaustingt.
aeW(K, X) = VCeZ, Ce.7, for some7,eH(a).

The theorem speaks winners,but biconditionally, so that it provides by contraposition a necessary
and sufficient condition for loser status as well. As promised, a candidalesier df there isno
exhaustive mapping of the constraint set into a favoring hierarchy for it. Notice that the meat of the
theorem lies in the left-to-right implication. Going the other way, right-to-left, it's clear from the way
an exhaustive favoring hierarchy is constructed that if such a thing exists, it will immediately give
rise to a total ranking that makes the favored candidate optimal. More surprising, perhaps, a
candidate that wins under any ranking whatever, an arbitrary winner, is guaranteed to have an
exhaustive favoring hierarchy, a very specialized ranking (family of rankings) on which it wins.

3.2.2 Comparison with Classic RCD

The Winner/Loser Theorem is the analog of the correctness result for RCD (Tesar 1995, Tesar &
Smolensky 1996ab, 1998, in press). Let us now pause to establish the relationship between the RCD
work and the approach developed here; we resume our discussion in the next section.
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RCD operates in two stages: a pre-processing stage, ‘mark cancellation’, prepares the raw
violation-data for analysis; then a ‘recursive ranking’ stage producésrtjet stratified hierarchy,
which we will see to be the same as our favoring hierarchy.

Mark Cancellation and Order Theory. RCD takes as input a set of statements of the form
‘a certain desired optimum must beat a certain suboptimal compaetite,for short. With this,
we are given the constraint-violation profiles of the candidates. Each statementwith its
associated constraint-violation data, constitutes a elementary ranking argument, and is known as
‘mark-data pair’. Aggregated, these form the ‘mark-data pair list’. The goal is to find a stratified
hierarchy that is consistent with the entire list, resolving all ranking arguments.

Each mark-data pair identifies the ‘loser-marks’, the list of constraint violations incurred by
the would-be suboptimum in the comparison, as well as the ‘winner-marks’, the constraint violations
of the desired optimum. (Here ‘marks’ = constraints violated, with multiplicity of violation
recorded.) Since evaluation is strictly comparative, the absolute quantity of violations is only
indirectly informative. All that matters is which candidate has more violations of a given constraint.
To determine this, shared marks are eliminated from each competing pair. (This is the cancellation
part of the Cancellation-Domination Lemma, Prince & Smolensky 1993:148.) In the post-
cancellation data structure, the ‘loser-marks’ slot contains those constrainietbathe desired
optimum those on whiclw>c. (These are known as the ‘uncanceled loser-marks’, i.e. those that
survive cancelation.) Correspondingly, the ‘(uncanceled) winner-marks’ are precisely those
constraints that perversely prefer the destdgmptimum, those on whiat> w, . (The winner-marks
are those constraints that threaten the optimality of the desired optimum; they must be subordinated
in the ranking.)

On the face of it, the post-cancellation mark-data pair list may not appear to closely resemble
anything we have been talking about. But it encodes statements of thesftwatsz on constraint
C’, precisely the kind abrder-information we have been working witlw¥z;C"). A mark-data pair
based on a relatian>z ‘desired optimunw is better thar would have C listed in its ‘uncanceled
loser-mark’ field. Conversely, if the desired outcome were instead, with z as thedesired
optimum, thisw-preferring C would be listed in the ‘uncanceled winner-mark’ field, identified as
a constraint that must be subordinated.

To use RCD to find out whether a candidate is optimal over a certain candidate set, we would
examine a set of ranking arguments of the farag, for a fixedw. If we collect all the forms
involved, we arrive at the set{ a,,...a}, which is just the kind of candidate set we have focused
on throughout our discussion. We also have considerable information on the order structure imposed
by each constraint, determined from analysis of the raw violation data, encoded in the mark-data pair
list. After mark cancellation, the mark-data pair list will classify, for each constraint, the order
properties of all members of the candidate set with respectimviding information as to whether
they are better, worse, or at the same level. 8%his is a coarsened version of the order information
that the constraint-order provides, but it is all we need to constisifavoring hierarchy. And if
we go through the candidate set testing various members for loserhood, we will eventually ferret out
the entire order-structure imposed by each constraint.

Recursive Ranking and the Favoring Hierarchy The first step of the RCD recursive
ranking subprocedure gathers all constraints from the post-cancellation mark-data pair list which
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assess no winner-mark¥hese are precisely the constraints that do not prefer any threatening
competitor to its correlated desired optimum: they either prefer the desired optimum, or they don’t
decide between the two. In the case at hand, where we’re compatingverything else in its
candidate set, these are the constraints upon which, for all competeahero>c or w=c. Clearly,
o sits at the top of all such constraints: these are just the favoring constraintg fese form the
first and highest stratum of constraints, in RCD as for us. Gathering these constraints and placing
them in the first stratum of the hierarchy is step lla of RCD (Tesar 1995: 84.2.2) and corresponds
exactly to our statement in (32):

F,=F(a, K, X))

The next step of RCD is to remove the constraints just gathered from the collection of constraints
being ranked (step IIb). This corresponds to our definition of the next-generation constraint set:
Ei"’l = EI - y((l,Kl ’EI)

RCD (step lic) goes on to remove from consideration all mark-data pairs which contain any marks
assessed by the constraints just gathered. Since these constraints do not assess marks against (i.e. do
not disprefer)o, this move is targeted at selected ranking arguments, where the competitar
is notat the top of the constraint. Left behind by this removal are thosexpasgsvherec, is at the
top of all the favoring constraints. In short, this step shrinks the relevant candidate set, just as in the
definition of the recursive favoring hierarchy, to those candidates thHatvaredby the constraint-
stratum just constructed. It corresponds to our definition of the next-generation set of candidates:

Ki+1 = Z(KJ

Finally (lld), RCD calls itself recursively, setting to working thie remaining mark-data paks
that is, on the remaining candidates K and on the remaining constiginEsom these, it defines
the next stratum as the constraints that assess no (uncanceled) marksvagairtstose that favor
o in the context of the reduced candidate set. In our terms,

F = (0, Kig, Biy).-

3.3 Favoring Hierarchies and the Maximal Bounding Set

The favoring hierarchy is the main tool for identifying bounding sets. The initial candidate set K
contains all potential members of the bounding set for a candid&i@ch successive favoring
stratum is guaranteed to eliminate from this set only non-bounds. This procedure of elimination turns
out to be remarkably successful in leading directly to a bounding set of particular interest. When the
construction of the favoring hierarchy is concluded, the set of remaining candidates, purged of those
that are never better tharon some remaining constraint, constitutes the one andnatymal
bounding seavailable forzin K. (If zalone remains, and all constraints are accounted for, then the
bounding set is null.)

This result in turn permits us to establish an upper bound on the sigerofimalbounding
set(s): a bounding set never has to be larger than the number of remaining non-favoring constraints,
those that must be left out of the favoring hierarchy.
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These findings confirm once again the conceptual centrality of the favoring hierarchy and
RCD within the theory of optimality.

Eliminating Reciprocity Violators. Let us begin by examining in detail how non-bounds are
eliminated with each new round of recursive favoring.

Any candidate not at the top of all favoring constraints is guaranteed to lead to Reciprocity
failure if included in a putative bounding set. For example, given the infinite candidate set
K={a,u,a,b,..} and the favoring constraints farshown below, no bounding set tomay haveu
as one of its members, becauseas no reciprocating partner on constraint A relative to K, and
therefore also relative to any of its subsets. Shrinking the candidate set to the intersection of the top-
strata of the favoring constraints eliminates non-boundsuligad retains all existing potential
bounds.

(36) AN BA
o, a b a,u, a,b,..
|
u

Besides leading to Reciprocity failure, candidateslilkdove cannot be used to help other
candidates satisfy Reciprocity on other constraints. As the name reminds us, Reciprocity only holds
between thenembersof a bounding set: sinae is excluded from all bounding sets, it cannot
constitute the reciprocating partner of any othaund. It follows that candidates likeare non-
bounds independently of what favoring stratum they are in.

Suppose, for example, that A and B in (36) above constituted'tfaoring stratum rather
than the initial oneu would fail Reciprocity on A all the same, because no member of the current
set of candidates strictly boundsn the favoring stratunv ={A, B}. Crucially, any previously
eliminated non-boung could not enter in a Reciprocity relation withand rescue it, even
strictly boundedr in A, because itself is excluded from all bounding sets due to its own failure of
Reciprocity.

Residual Constraints and Residual Candidateslhe favoring hierarchy for a candidat¢hus

ensures that each successively-identified favoring stratum eliminates a set of non-bounds which need
but fail to have reciprocating partners. Whes a loser, the favoring hierarchy may identify one or
more favoring strataz;, but eventually hits a set sésidualconstraintsnone of which favors, so

that no additional favoring stratum can be formed. Likewise, the candidates surviving each favoring
stratum — the co-winners of each favoring stratdm— constitute the set eésidualcandidates

from which the maximal bounding set omwill be drawn. Both notions are defined below:

(37)Def. Set of Residual Constraints-or any constraint sét, and favoring hierarchy((a) over
%, the set of residual constraints R&sis formed by all and only the constraints3irbut not in
H(a):

Resg) =X - {C: CeH(n)}
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(38) Def. Set of Residual Candidated-or any constraint sei, candidate set K, and favoring
hierarchyH(a)= (.7, ....7,) fora in K, the set of residual candidates Res(K) is formed by all and
only the candidates in K that co-win withon each favoring stratui#; :

Res(K)=[7, .. 7.l(K)

Viewed froma’s perspective, each residual constraint has the shape shown in (39) below,
with at least some residual candidateecessarily ordered abaweand, possibly but not necessarily,
some other residual candidateands ordered with and below.

B9 c»
p
I

o, Y

I
5

The shape of the residual constraints guarantees that the entire set of residual candidates
Res(K) always satisfies Reciprocityhh Any member strictly worse thanon a residual constraint,
such asd above, is always rescued by a reciprocating member strictly bettea,thanby the
necessarily presefit On all other constraints —those favoriag- all residual candidates share the
same ordered-stratum @f hence they are never strictly worse thathus satisfying Reciprocity
vacuously.

Strictness Violators and the Maximal Bounding SetWe may now buildhe maximal bounding
set fora, or B*** (@), by simply collecting from the set of residual candidates all those that are strictly
better thar on some residual constraint, i.e. the candidates that with respect to the schema in (39)
above are in thp position on at least one of the residual constraif®.d is guaranteed to satisfy
Strictness by construction, since all the elements that are not strictly bettersbarewhere —
those elements that take either ther thed position acrossll residual constraints— are never
collected.

B“¥(a) also satisfies Reciprocity. This property already holds of the residual candidate set
Res(K), of which B® ¢) is a subset. Those elements in Res(K) that are left olt*6fiBcogld not
in fact serve as reciprocating partners for any membeY%fd}, bécause this would require them
to be strictly better than on some constraint, which by construction they are not. Therefore,
Reciprocity remains satisfied even after their elimination, and hold¥%%B thé set which is
precisely the result of eliminating them. It follows th&®Bx) is a bounding set fax over X.
Moreover, the way B> o) is built guarantees its maximality and its uniqueness. Any eliminated
candidate fails Strictness and could not be a member of any possible bounding set.

This result is encoded in the following definition and theorem, which is followed by an
example illustrating the above discussion.
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(40) Def. Maximal Bounding Set.For any constraint s&, candidate set K, andin K, let B" ()
be formed by all and only those candidates in the set of residual candidates Res(K) that are strictly
better tharw on some constraint in the set of residual constraint2Ires(

BY(a) = {x : xcRes(K) anddCcResg) (x>a;C")}

(41) Maximal Bounding Set Theorem.For any constraint s&l, candidate set K, andin K,
BY*(a) constitutes the unique maximal bounding setifaglative toX and K.

Exemplification. Consider the system diagrammed below, @r#{A,B,C} and K={a,b,c,d,£ Let

us seek the maximal bounding set4ofl he first favoring stratun¥;, for z includes only A. The
co-winners for.7, are thus ,b,c 2, with candidated eliminated, because it would provoke
Reciprocity failure on A, where no candidate is strictly better than

(42) A" B" (o 71 = {A}
a,b,c,z d b 7,(K) ={a,b,c,z}
I | |
d a z,cd
| |
z a
I
b, c

When we consider the remaining constraints relative to the residual candidates, we find the situation
shown here below, with no constraint favorm@ he set of residual constraints set consists of B and
C, and the set of residual candidates is equal (&), i.e. Res(K)=f,b,c,2.

43) B~ cn Resg) ={B, C}
a b Res(K¥ {a,b,c,z}
| | Maximal bounding set'B  (z){a,b}
z z,C
I |
b, c a

As discussed above, the set of residual candidates satisfies Reciprocity relative to the original
2: hereb andc are strictly worse thanin B, but they are rescued thereayyvhich is also in the set.
Symmetricallya is strictly worse thaain C, where it is rescued My also in the set. Note that all
members of the set{b,g are order-equivalent toin A, thus satisfying Reciprocity with respect
to this constraint as well (vacuously). The same set, however, does not satisfy Strictness: candidate
c is never strictly better thanon any of the constraints ¥x Nor, of course, iz ever strictly better
than itself. It follows that the set of residual candidates can never qualify as a bounding set.

Let us now construct8* (z) by selecting from R3sdll and only the elements that are
strictly better thare somewhere in Rek], i.e.a andb. This set satisfies both Strictness and
Reciprocity. Strictness is satisfied &yn B and byb in C. The challenge of Reciprocity is met by
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a rescuing the-betteredd in B, andb rescuing the-bettereda in C. A quick check shows also that
set {a,b} constitutes the unique largest available bounding setrgative to the original constraint
setX.

Bounding sets for Winners.All above definitions and theorems apply to any favoring hierarchy
H(a), independent of whetheris a loser or a winner. Whenis a winner, the favoring hierarchy
eventually maps all constraints into favoring strata, leaving a null residuB)Reg( . The set of
residual candidates Res(K) will contain all and only those elements which appeamivitie top

of all favoring constraints throughout the construction, and since in this case these exhaust the set
of available constraints, the members of Res(K) are order-equivalerictoss the board. (They

are therefore grammatically indistinguishable froas far aZ goes.) None of them is strictly better
thano on any constraint, and they therefore are eliminated fréth B as Strictness violators, which
leaves us with a null maximal bounding set. The emptiness afdikanalbounding set, by a brief

bout of set-theoretic reasoning, entails the emptiness of any of its subsets, confirming that winners
associate with empty bounding sets (Bounding Theorem (16) §2.1).

Upper Bounds for Blocking SetsThe unique maximal bounding set sets an upper limit on the size
of any other available bounding setg(including any minimal one. A more precise limit is given
by the size of the set of residual constraints Re$¥/e reach this result in three steps: first we show
that any set S of constraints wiitbound on each constraint allows for a canonical bounding set
collecting a bound for each constraint whose size cannot exceed that of S. Then we use this result
to identify an upper bound for minimal bounding sets in the size of the constrahteset finally
we show that the residual constraint set R itself a bound on minimal bounding sets, in fact
the strictest possible bound.

We begin defining the notion dfsfavoring systeni(z), denoting a collection of constraints
wherezis strictly bounded by some other candidate. Clearly the set of residual constraib)s Res(
for a favoring hierarchiH(a) constitutes a disfavoring system for

(44) Def. Disfavoring System.For any set of candidates K, a set of constraints Slisfaoring
system\(z) for a candidatecK iff on each constraint of S some elememt K strictly boundsz
A(z) ={C : CeS & JaeK, a>zin C}

We may now show that any disfavoring system of cardinaktjyows for a bounding set of
at mostn elements, and then generalize the result to constraint sets of any other type.

For any disfavoring system(z) let us define a corresponding ‘blocking set’ B formed by
picking for each constraint is(z) an elemend that strictly boundz on that constraint; note that
a is guaranteed to exist by the definition of disfavoring system.

(45) Def. Blocking Set.Let A(z) be a disfavoring system defined over some constraint set S and set

of candidates K, then’B is a blocking set Agr) iff for each constraint €S the set B contains
exactly one designated elemerthat strictly boundg on C.
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The defining property of a blocking set is that each member constitutes a designated strict
bound for a specific constraint. This does not necessarily prevent a constraint from presenting two
bounds. For example, the set B in the example below is a blocking set becaaseunts as
the designated strict bound for C anfbr C,, even though both candidates strictly boamah C
as well. In contrast, the setHa,b,gd is not a blocking set, because there is no way to identify each
of its members as the designated strict bound of a distinct constraint. At least one constraint
necessarily ends up with two strict bounds derived from it.

(46) CA cN A(z) = {C1, C2}
a, b a, c A possible’B : B={a, b}
| |
z,C b
|
z

Since more than one candidate may strictly bauod a specific constraint, there may be
more than one blocking set B for any disfavoring systemnd different blocking sets may be of
different size depending on how many constraints select the same candidate as designated strict
bound. In (47) below, for example, the sedshf and {b} both constitute a blocking set fa(z),
because both are built by picking just one element for each constraint that stricthyexedgt that
in the case ofl§} the selected element is the same for both constraints.

(47) CA C A(z) = Cg, Gy
ab b A
| | B = {a,b}
z |Z Bo = {b}
a

For a disfavoring system, any corresponding blocking set B constitut%s a di ¢
overA. A blocking set B obviously satisfies Strictness, because by definition Q3R e Ber of B
is a strict bound for on some constraint. Moreover, B satisfies Reciprocity, since for any member
strictly bounded by on some constraint &, there is by definition another designated strict bound
for z on that same constraint.

(48) Blocking Set Theorem. For any candidate set K and disfavoring syst&fm), every
corresponding blocking set'B constitutes a bounding set B(z)\¢zkr
VYA(z), B* = B(2)

The Blocking Set Theorem immediately yields the result that the size of a bounding set need be no
larger than the cardinality of the constraint set. Any non-null bounding set B(z) implies the existence
of a non-null disfavoring syster(z) formed by all those constraints where the members of B beat

z to satisfy Strictness. Then the above theorem guarantees the existence of a corresponding Blocking
Set B' which qualifies as bounding set oxér).
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We can build B so that it constitutes a bounding set over the full constratdEit takes
is to pick as designated bound for each constrais{zhan element from the original B(z), so that
B* is one of its subsets. Constructed in this wa¥y, B satisfies Strictness, bezrause all members
of the superset B(z) do so by definition, and it also satisfies Reciprocity, because on all constraints
external to\(z) by definition all candidates in B(z) satisfy Reciprocity only vacuously, and this must
then be true of its subset B as well.

The result is encoded in the theorem below. Since any candidate allows for a bounding set
(since winners have empty bounding sets), we state the theorem in the most general terms:

(49) First Bound on Bounding Theorem.For any set of candidates K, constraint?sednd for any
candidatencK, there is a bounding set ®(overX whose cardinality does not exceed thaktof
v, VK, VoeK, |B(@)] <|Z|

An even stricter limit is provided by the size of the set of residual constrainis)Rek(ch
constitutes a disfavoring system foof sizek, with k<n. From any disfavoring systembéocking
setmay be constructed by collecting from each constraint in the system one candidate that is strictly
better tharm.. Such a blocking set is necessarily a bounding set, according to the Blocking Set
Theorem above. Since RYis a disfavoring system, there exists a blocking set B derived from it,
with no more thaik elements. By the theorem, B is a bounding set with respect to the constraints in
Resg). But B is also a bounding set with respedltaf X. The set B satisfies Strictness relative
to 2, since adding constraints can never jeopardize this property once it holds. The same holds for
Reciprocity, since B consists of residual candidates, and residual candidates vacuously satisfy
Reciprocity on any non-residual constraint, because they must be order-equivalénére. It
follows that B constitutes a bounding setdan X whose size at most equals that of Rg¢s(Ve
record this result in the theorem below.

(50) Second Bound on Bounding TheoremFor any candidate set K, constraint Zgtand
candidatencK, there is a bounding set B ovBwhose cardinality does not exceed that of Res(
Vv, VK, VaeK, 9B(a) |B()| < [ResE)|

The bound provided by the size of R&s(s also the strictest available one, in general,
because a minimal bounding set may match it. One such case is shown in example (43) above,
repeated below for convenience. The only blocking set availabiofaer the residual constraints
B and C must include the two candidadgeandb, reaching the cardinality of the residual constraint
set itself.

(51) B~ cn Resg) ={B, C}
a b Res(K¥r{a, b, c, z}
| | Blocking set: ¥ (z {a, b}
z z,C
| |
b, c a
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Minimal bounding sets.Each minimal bounding set must necessarily be a subset of some blocking
set defined over the set of residual constraints. Consequently, blocking sets bound minimal bounding
sets in size. This leads to further limitations on the size of minimal bounding sets. Recall that there
can easily be several blocking sets associated with the same disfavoring system, as long as some
constraint has more than one candidate that is better than the targeted loser. According to the
definition, only one such candidate may be chosen for a given blocking set, but either one is choose-
able. Furthermore, a lucky choice might also do double duty, servingabettering candidate for
some other constraint. This means that blocking sets from the same disfavoring system can be of
different sizes as well as different compositions.

If B is a minimal bounding set farin %, then B is a subset of the unique maximal bounding
set B, and hence its members must be drawn from the set of residual candidates that are strictly
better tharz on some residual constraint. Since B is minimal, it never needs more than one such
bound per residual constraint, and is therefore a subset of some blocking set; the result is formalized
in the theorem below.

(52) Minimal Bounding Set Theorem.For any candidate set K, constraint send candidate
aekK, let B be a minimal bounding set ferover K and, then B is a subset of some blocking set
B’ over Rest), drawn from Res(K).

A minimal bounding set need not be itself a blocking set. For example, given the residual constraints
in (53) below, the only available blocking set fas B={a,l}. The minimal bounding set, however,

is B'={a}, which does not constitute a blocking set because it includes no candidate that is strictly
better thanz on constraint € . Yet Batisfies both Strictness and Reciprocity (the latter only
vacuously), and is thus a bounding set.

k3 CA c, Blocking set: B={a, b}
a b Minimal bounding set:'B{a}
| |
z z,a
|
b

This example illustrates how ‘weak bounding’ can be exploited even on residual constraints
to limit the size of a bounding set. (As in the definition of simple harmonic bounding (2), we say that
a ‘weakly boundsb on a constraint i is at least as good bh®n the constraint, maybe better, but
not worse.) On all the other constraints, those that made it into the favoring hieaiskygakly
bounded by all residual candidates because there they must be order-equivzalem tbefinition
of ‘blocking set’ requires that a strict bound &dve collected from constraint,C . But for purposes
of constructing a satisfactory bounding set, this is unnecessary, becausese strictness is
guaranteed by £, weakly boundn this constraint, and there is no issue with reciprocity.
(Choosinga here is thus consistent with the Strictness and Reciprocity conditions.) Because
Strictness requires that each member of a bounding set be betteothaome residual constraint,
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it follows that each member of a minimal bounding set is also a possible member of a blocking set,
ensuring the subset relation between minimal bounding sets and blocking sets.

3.4 Summary

The theorems examined in the previous sections emerge as closely related to each others, together
casting light on the architecture of the order calculus intrinsic to harmonic optimization.

We started from the observation that optimization is intrinsically comparative, a property that
suggests an infinite number of comparisons between a winner and the infinite losers. This intuition
was proven wrong. The Ranking Determined by Winners Theorem tells us that all it takes to be
optimal for some ranking is to beat all other winners, in principle freeing the learner and the analyst
from comparing the winners with the infinite set of losers.

The issue is rather whether there is a finite and efficient way to know if a candidate is a
winner or a loser. The answer is positive. The Winner/Loser Theorem, which recapitulates Tesar and
Smolensky’s RCD procedure and demonstrations, guarantees that we can tell apart a winner from
a loser by simply building the associated favoring hierafdy), thus freeing ourselves from
collecting them through the lengthy calculations of thavailable rankings of ang-sized X.

The importance of favoring hierarchies emerges equally strong when tackling the issue from
the perspective of losers. The Bounding Theorem ties loser-status to the existence of one or more
candidates collectively satisfying the two ranking-independent conditions defining bounding sets,
Strictness and Reciprocity. But searching for bounding set members by eliminating non-bounds leads
once again to favoring hierarchies, since the identification of successive favoring steatatfor
way to eliminate any potential bounding set member whose inclusion in the bounding set would
cause Reciprocity failure. The Maximal Bounding Set Theorem then ensures that the same stratified
hierarchy will yield a non-empty unigue maximal bounding $&t B afehena is a loser. The set
BY> may in turn include one or more blocking bounding sets, each including one or more minimal
bounding sets whose size never exceeds that of the set of residual constraints.

All these results rest on the reinterpretation of constraints as functions that return the
maximal elements of a stratified hierarchy, and of optimization as functional composition; together,
they form the base for the formal demonstrations of the next two sections.

4. The Fine Structure of Optimization

To set the stage for the main results, we establish here some fundamental properties of OT
grammars. We start (84.1) with the most basic properties of constraint hierarchies, which
practitioners will not find surprising, and we move on to address the specific properties of favoring
constraints and favoring hierarchies (84.2). The results demonstratedihprevide the tools for

proving the central theorems on winner/loser status in 85.
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4.1 Basic Properties

Our first lemma concerns the recursive nature of evaluation: the generic evaluative problem faced
by a ranking R when confronted by a candidate set K is replicated as we move down the hierarchy.
Thus, evaluation of K over a ranking R=GH can be exactly recast as evaluation of the set of
candidates G(K) over the subhierarchy H. In essence, this is a kind of ‘compositionality’ of ranking,
which follows immediately from the representation of hierarchies as compositions of constraint
functions.

(54) Compositionality of Ranking. Given a ranking R, and a partition R=GH, then the optima for
R over the candidate set K are exactly the same as those for H over the candidate set G(K).
[GH](K) = H(G(K))

Pf.We have G = [€ ...C] and H=[C ..,C ], for constraints C ,..,C .
[1] By the definition of constraint hierarchy, G(K) = C (..(C (K))).
[2] Likewise, H(G(K)) = G (..(G. (G(K)))).
Substituting [1] into [2], we obtain, H(G(K)) =,C (..{4E€ (C(.(C (K))))))=R(K)I

We now show that some familiar properties of constraint hierarchies follow from our definitions:
candidate sets shriffk as evaluation proceeds; multiple optima must do equally well on all
constraints; relative harmony is a strict order; and optimal candidates are maximal in that order.

Shrinkage. No constraint can ever restore a candidate that has fallen out of the candiddte set
other words: for any sequence of constraints R, the set of survivors is monotonically non-increasing
as each additional constraint is evaluated. In terms of functional composition, we want to show that,
given R=[GH], the set of optima for the constraint functiciHis included in the set returned by

G. We first note an obvious property of all compositions of ‘shrinking functions’, those for which
f(K) c K.

(55) Shrinkage Property. Let R be any ranking on any constraint set, K any set of candidates.
R(K) c K

Pf. If R contains only one C, then C(K)K for any set of candidates K, because C(K) is defined as
max(K;C"eK. Assume that the theorem holds up for hierarchies up to some kerigém consider

a hierarchy R of length+1. We have R=[HC] and [HC](K) = C(H(K} H(K) < K, the second
inclusion following from the induction hypothesis, the first from our initial remark.

This result, as André Nundel has put it, affirms only that the optimal candidatinéscandidate
set. A more general shrinkage property for constraint hierarchies follows forthwith:

' We include both proper and improper subsetting under the rubric of ‘shrinkage’.
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(56) Inclusion Lemma: For any ranking R=GH, over any set of constraiijtand for any candidate
set K,
[GH](K) < G(K)

Pf. R(K)=[GH](K) = H(G(K))cG(K) by the shrinkage property, since G(K) is a set of candidates.
Terminological remark. It is useful to be able to refer to the G of a ranking [GH]. Order theory
provides the right term: ‘(initial) section’. The (initial) section of an order is a contiguous

subsequence starting at a designated extremum, for us the top.

(57) Def. Initial section. Let(S;> be a totally ordered set. Amitial sectionof (S;>) is a subsedS
such that/xel YyeS (y>x= yel).

Example. Familiarity with the shrinkage property can be gained by working through the following
example. In (58), the constraints are ranked left to right.

(58) R=G >>G >>¢C ,K={a, b, c, d}

ch cpr cy
ab,c d c,d
| | |
d a, b a

I I

c b

Let us evaluate various initial sections of the hierarchy, according to the recursive definition of
ranking as function composition given in (26) above.

» For R=@, the null constraint-sequence, all candidates in K={a,b,c,d} are in the winning set.

*At R = [C,], candidatel is lost:
C.({fa,b,c,d}) = {a,b,c}
Note:d is not maximal in € relative to K.

*At R = [C,C,], the set of surviving competitors is thinneé tandb:

C, (G.(K)) = G ({a, b, c}) ={a,b}.
Note: candidatd beats botla andb in C, over K, but it i:mot in C, (K). Having lost
to them on € d cannot be in [C € ](K), an instance of the Inclusion Lemma.

* At R = [C,C, G ],a emerges as the optimum:
C5((C»Cy (K)) = G({a,b}) = {a}
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Note: Bothc andd are eliminated in shorter initial sections of the ranking and they
have no effect on the calculation at the C level, despite beatindC3 over all of

K. Buta s still in the running and bedbs pushing it out of the survivor set. Thus,
the set of optima for this ranking — JC, G, C ](K) — contains aaly

We can graphically illustrate the process of elimination as follows:
(59) G>>G>>G, K={a, b, c, d}

C, C, Cs;
a,b,c mox ¢
I I I
d a,b a

I I

(o4 b

This example also shows that being at the top of some constraint is not sufficient for being optimal
under all rankings. It is, of coursenacessarycondition for being optimal undeomeranking
(84.2). For example, under the ranking C 3>C 3>C , the winn&rasdc wins under the ranking
C,>>C,>>C,.

But topmost status in a constraint is still sofficientfor being optimal undesomeranking,
i.e. for being avinner. For example, in (60) below, although it is at the top,0b@ ,never optimal
under any ranking of C and,C .

(60) cr~ Cp
a,b a

I
b

Equivalence These examples illustrate a further important property of survivor sets: all candidates
that survive the evaluation of a constraint C somewhere in the hierarchy are edwasdently
orderedon any constraint that precedes C in the ranking sequence. All such candidates must be
equivalently ordered on C itself, and by the Inclusion Lemma it follows that they are equivalently
ordered by all preceding constraints. These observations are recorded in the Equivalence Lemma
below:

(61) Equivalence Lemma.Let R be a ranking on a set of constralitsLet x,\eK.
If x andy are both optimal in K for R, they are order-equivalent on every constraint in
VCeX, X,YeR(K) = (x=y;C")

Pf. [1] Observe first that ik,y are both optimal on some R, then they are order-equivalent on the
last constraint C in R=HC. This follows because R(K) = C(H(K)): singeR(K), we have by
definition of C as function that both are maximal elements in C” over H(K), and therefore neither
x>y nor y>x on C”. But this means that they are order-equivalent in C’anyset of candidates:
(x=y;C").
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[2] Now, consider any other non-null initial sectiof*R; it must also have last constraint
C,, to which the preceding remark will apply. By the Inclusion LemmaR(Jg) = x,yeR'(K). And
by what we have just noted in [1], we have, for R =, HC ¢[}€Z J(K) = (x=y;C ). So if
x,yeR(K), we have (xy;C,") for any G inZ, since R is arbitrary]

The Equivalence Lemma places no conditions on the size or shape of R, and R itself may be an
initial section of some other hierarchy. It follows, as promised, that members of the survivor set at
any point in a ranking are equivalently rankede@arypreceding constraint.

(62) Corollary . Let R=[GH] and x,yG(K). Then for every C in G, we have~{C).
Pf. Apply the Equivalence Lemmato G.

The competitors that survive some initial section of a ranking along with a specific candatate

also the only candidates that may still threaten its optimal status by beating it on the not-yet- assessed
constraints of the complete ranking — they constitute the potential membership of a bounding set
for w.

We conclude by reconstructing the notiorrelhtive harmony order on the full candidate
set with respect to a hierarchy, as projected from the individual orders imposed by constraints. To
date, we have dealt only the pursuit of optima and have said nothing at all about how suboptimal
forms might relate to each other. But our apparatus allows a natural way to compare any two
candidates: we will say that a candidaie more harmonid¢han another candidayaelative to a
ranking R whenevex wins andy loses in the set of candidates {x,y}, in which case we will write

(x-y;R).

(63) Def. Relative Harmony. For any candidates x,y, let K={x,y}. We say:
x>y on a ranking R iff kR(K) and y¥R(K).

Through relative harmony, a constraint hierarchy imposes a stratified strict order on any set of
candidates, if each constraint is itself a stratified partial dfder. A constraint hierarchy is thus itself
a constraint. The optimal candidates are simply the maximal elements of’tbeder . These
important properties are captured in the following lemmas.

(64) Relative Harmony is a Stratified Strict Order. Let x,y,ze K. Let R be a ranking on some set
of constraint, and let %" be the relative harmony relation. Then,

(@) “~"is irreflexive: = (x-X),

(b) “>~” is asymmetric xy = = (y>X)

(c) “~"is transitive: (xy & y>z) = (x>2).

(d) “~" is stratified:Va,b,xK, =(a>bV b >a)= (a>X < b >X)

121f a constraint is allowed to be a more general form of partial order, the result of constraint composition
may not even be an order at all: see Appendix A.
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A strict order is asymmetric and irreflexive, as is reflected in conditions (a) and (b).

(65) Optimality Maximality Lemma .
acR(K) iff a is a maximal element in the harmonic order RK=-) induced by R on K.

For the sake of swiftness, we relegate the proofs to Appendix A, and move directly on to the analysis
of favoring.

4.2 Favoring

In this section, we establish the basic properties of favoring constraints and favoring hierarchies.
Recall that davoring constrainfor a candidate is one for which that candidate is maximal in its
candidate set.

Def. Favoring Constraint F is afavoring constrainfor a over K iff aeF(K).

As noted above, thiavoring property generalizes the notion of ‘satisfying a constraint’ to the OT
context: a favored candidate need not litersdiysfysome criterion, but it musko beston it, in the
sense that none of its co-candidates do better.

Our major goal is to show that the entire set of favoring constraints can be moved to the top
of a ranking, without affecting the success (or failure) of a favored candidate on that ranking. When
set to work recursively in 85, this result will allow us to deduce that every potential winner has an
exhaustive favoring hierarchy, and every loser a non-exhaustive favoring hierarchy which determines
its non-empty maximal bounding set. Wil also show that the output of a collection of favoring
constraints is determined independent of ranking: it is just the intersection of the tops of each
constraint in the collection. We will approach these results through a series of small steps.

First, we note a fact that will become useful later: any ranking on which a candidate wins
must begin with a favoring constraint. (If not, some candidate would beat it right away, at the
evaluation of the first constraint.)

(66) Initial Favoring Lemma. ForacK, and any ranking R=CH of some constraintseif o wins
over R, then C is a favoring constraint foin K:
ae[CH](K) = aeC(K).

Pf. By the Inclusion Lemma, [CH](K) = H(C(KJ)C(K). Thereforene[CH](K) = acC(K). [

Now we set off toward our main goals. The key background observation is that a favoring
constraint can never be responsible forghboptimalstatus of its favored candidate; it cannot
displace the favored candidate from any candidate set.

It follows that adding a favoring constraint to a ranking cannot change the prior status of the
favored candidate, in the following senset i winner on a ranking sequence R, thenust also
win on the extended ranking [RF]; andiifoses on R, it must also lose on [RF]. (The latter point
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is obvious from the fact that no constraint may put a losing candtiaekento the winner set.) More
generally, ifa wins on R=[GH] ther also wins on [GFH], for any G and H.

This result is stated and established in the Favoring Transparency Lemma (70). In the
interests of generality, we will assume only the minimum necessary about constraint orders: that they
provide maximal elements; we will not require of them that they be stratified orders, such as are
produced by violation theory.

In reasoning toward the Favoring Transparency Lemma, we use a simple but useful result
about maximal elements in ordered sets: maximality in a set entails maximality in any subset that
includes the maximum. If Everest is the tallest mountain on planet Earth, it is the tallest mountain
in Asia, and in Nepal. If Buddy is the meanest dog east of the Mississippi, we may legitimately infer
that he’s the meanest dog in New Jersey, and in New Brunswick, where he lives.

(67) Downward Inheritance of Maximality (DIM). If x is maximal in an ordered set P, it is also
maximal in every subset of P to which it belongs.
Let xemaxQ;0).Then for any BQ with xcP, xcmaxP;0).

Pf. xemaxQ;0) iff YyeQ, = (y>x). In particular, then, since®, VzeP, - (z>X). [

We can now establish that favoring constraintsufare a kind of identity with respect ds fate
on a ranking:

(68) Favoring Extension Let R=[HF] be a ranking, with F a favoring constraintdon K. Then,
aceH(K) < ac[HF](K).

Pf. Right-to left: by the Inclusion Lemma, [HF](KH(K). Left-to-right: we argue that sineeis in

the set H(K) and maximal with respect to F* over its superset K, we can apply DIM to get the result.
That is: by hypothesigsH(K), and H(K)K by Shrinkage. Since is favored by F, i.e. maximal in

the F~ order over K, it follows by the DIM thatis maximal for F* over H(KK, i.e. that
aceF(H(K))= [HF](K). O

We still need to check that the equivalence of a hierarchy H and its extension HF, asdar as
winning or losing goes, is preserved when H and HF are themselves initial sections of some larger
hierarchy.

To show this, we first note a property that follows directly from the DIM as applied to the harmonic
order “-” imposed by rankings on candidate sets: if a candidate wins on some ranking for a given
candidate set, it also wins on a subset of that candidate set, so long as the winner is in the subset.
This is pure DIM reasoning: if the winner beats everything in the bigger set, it also beats everything
in the subset. (This observation is also useful in its contrapositive formogesin a certain
candidate set, thanloses on any superset of it.)

40



(69) Optimality Inheritance . Suppose K=K, and letaeK’. Then: aeR(K) = acR(K").

Pf. Candidater is maximal in the harmonic orderdetermined by R over K. By DIMy is maximal
over(K’;>) as well. (J

With this in hand, we show that a favoring constraintifoan be inserted in any ranking thatins
on, without disturbing’s primacy.

(70) Favoring Transparency Lemma For any ranking R=[GH], candidate set K, and for any
constraint F favoring in K,
ae[GH](K) = ac[GFH](K).

Pf. In the functional notation, we wanEH-G(K) = acH-F-G(K). We argue by Optimality
Inheritance that sinaeis optimal on H(X) for Xx=G(K), it must also be optimal for H(Y), fot:X,
where Y=[GF](K)=FG(K). G(K) will play the superset role, [GF](K) the subset role in Optimality
Inheritance.

First, note that [GF](Kk G(K) by Inclusion. We need<[GF](K) to be able to invoke
Optimality Inheritance. By hypothesis,we haweGH](K), yielding aeG(K) by Inclusion. By
Favoring Extensiome[GF](K). So we have, as desirat[GF](K) < G(K).

Now, by Optimality InheritancescH(G(K)) = aeH(F-G(K)). (I

Favoring Transparency leads to a very useful result: favoring constraints can be promoted in a
ranking without affecting the optimality/suboptimality of the favored candidate. Schematically,
...HF... can be flipped into ...FH... without affecting the status of F’s favorites. Thisilicaitow

us to re-arrange hierarchies into a canonical form that is most favorable to a targeted candidate and
least favorable to its potential bounding set— a favoring hierarchy.

The proof turns on the following fairly obvious fact: a constraint cannot be meaningfully repeated
lower down in a hierarchy.

(71) Repetition Futility . For any constraint hierarclky any constraint C, any candidate set K:
[CxC](K) =[Cx](K)

Pf. By Favoring Extensionx] = [XC] over any candidate set that consists entirely of elements
favored by C. But C favors every element of the set C(K). HengéC (K)) = [XC](C(K)) =
C(X(C(K)). ™

(72) Corollary . For any constraint hierarchigsr,z, any constraint C, and candidate set K:
[XCYCz](K) = [xCyz](K)

Pf. Since [¥C] is merely a function on the set of candidatés), by Repetition Futility we can
replace it with []. Now, we have
[XCyCZ](K) = [CYCZ] (X(K)) = Z([CYC](x(K)) = z([CY](X(K))) = [CyZ](X(K))=[xCYZ](K).

The first two steps are justified by Compositionality of Ranking, the third by Repetition Fultility, the
last two by Compositionality agairi.]
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We can now easily establish the desired result.

(73) Favoring Promotion Theorem Let K be a set of candidates,a set of constraintg, a
constraint hierarchy, and let F be a favoring constraint fork. Then:
a€ [...zF...](K) = a€ [...Fz...](K)

Pf. ae [...zF...](K) = ag[...FzF...](K) = a€[...Fz...](K).
The first step follows from Favoring Transparency, the second from Repetition Fufility.

Favoring Promotion gives us real power: it ensures that any cangdidateing on a ranking R will

also win on any permutation Riffering from R only in thaall favoring constraints fax have been
promoted to the front. This provides the following necessary condition for optimality, which is the
first step toward the Winner/Loser Theorem.

(74) Favoring/Residue Lemma Let R be any ranking of a set of constratdt€onsider the se¥
=7 (0, K, X) of the constraints in R favoringin K, and let7~> be any ranking for them. Let
[Z-.7]R be a hierarchy consisting of the residual constrainis ianked according to their order in
R. Then the rankingZ ][ 2-.7]% hasa as an optimum wheneveiis optimal for R.

aeR(K) = ac[.777][ 2-.7]/(K).

Pf. SupposeicR(K). By the Initial Favoring Lemma, R=FH for some favoring constraint, hence
7>>+@. Now, starting from R, build R[.7 *J[Z-.7] "stepwise by promoting to the front the
highest-ranked favoring constraint F that follows a non-favoring constraint in R. Starting with R=R
and terminating with R =R each promotion transforms an intermediate ranking Y&z][into
R.,=[Frz], with the Favoring Promotion Theorem ensuring that at eaclusiK)= acR,,, (K).
Therefore, by transitivity of implicatiomeR(K) = aeR’(K). [J

We conclude by showing that a favoring stratum applied to a candidate set returns the
intersection of the tops of all the favoring constraints in it. This provides an upper bound for the set
of optima of any ranking with the shapgT][Z-.7]%, as well as for each bounding set, since the
intersection may include candidates that co-occur with the favored candidate at the top of each
favoring constraint but are beaten elsewhere.

As a preliminary, we establish that a favored candidate wins on any ranking of a set of
favoring constraints.

(75) Favoring Stratum Optima. Let.7 be a set of favoring constraints fom K. Thena wins on
any possible rankingZ~” over.7.
v.777, a ranking of7, ae.77(K).

Pf. For any ranking7>> over.7, let > and f be two initial sections of> such that4* =4 F.
Then, by Favoring Extensiong 1“}(K) iff ac 1X(K). Hence, by transitivity of implication, on all
such statements over initial sectiohs | farjGn, we haveucl (K)=.7">(K) iff acl(K) = K, and
sinceaeK it follows thatae.77(K). [
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(76) Favoring Intersection Lemma.Let.7 ={F,,...,F,} be a set of favoring constraints tom K.
Then the set of optim& (K) for any ranking7~~ on.7 is equal ton, F(K), 1<i<n.
Z(K) =y R (K).

Pf. By Favoring Stratum Optima, we have for aAy” over.7, ae.7 ~(K). By the Equivalence
Lemma it follows that/xe.7~7(K), we must havexta;F?) for any F in7. Since for all E.7 we
have by hypothesiseF(K), it follows thatxeF(K), and therefore that for any rankisy”™ over.7,
77(K) = n R(K).

For the reverse inclusion relation, ¥et, F (K). Then for any E.7, we havexeF(K). Hence
all F in.7 are favoring constraints fay from which it follows, by Favoring Stratum Optima, that
xe.7 7 (K) for any ranking7~~ over.7. Thereforen, F(K) c.77(K). [

5. Winners and Losers

In this section we establish the two central related results: the Winner/Loser Theorem, which asserts
that a candidate is a winner if and only if it has an exhaustive favoring hierarchy, and the Bounding
Theorem, which asserts that a candidate is a loser if and only if it has a non-null bounding set.

5.1 The Winner/Loser Theorem and the Bounding Theorem

We begin by restating the initial theorem on the determination of ranking by winners, which ensures
thatw is optimal on any ranking R if and onlydfis at least as good on R as all potential winners,
the elements of W(K). This is equivalent to saying thatR(K) iff wcR(W(K,X)), where on the

right hand side the competition is restricted to potential winners only. This is equivalent in turn to
saying that the set of optima with respect to K dves identical to the set of optima with respect

to W(K,X), i.e. R(K) = R(W(KX)). In this concise form, the theorem transparently shows the
dispensability of losers: competing for optimality over VW§Kis equivalent to competing over the
potentially much larger loser-inclusive K.

(77) Determination of Ranking by Winners.

Let X be a set of constraints, and K a set of candidates. Let3)€, the set of candidates
that are optimal for some ranking RXfand letweK. Thenw is optimal in K on a ranking R iff
for every xW(K,X) we have ¢>x;R). In short,

R(K) = R(W(K.X))

Pf. Assume firstoeR(K). By the Optimality Maximality Lemma (65), for ang, (o>X;R). Since
W(K,2)cK, for anyw’'eW(K,X)<K it follows that @w>w';R), and hence thaicR(W(K,X)). For the
reverse inclusion relation, assumeR(W(K,X)), and letw’ be optimal in K on R, i.ev'eR(K).

From this, we have’'cW(K,X). But then becausecR(W(K,X)), we have@>w’; R). This means
thatw must also be a maximal element in K on the R” order. By the Optimality Maximality Lemma,
it follows thatweR(K). [
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Let us turn to the Winner/Loser Theorem, which shows that a candidai@ winner over
constraint sek if and only if there exists a favoring hierarcHy (.7,..7 ) for w exhaustingz.

(78) Winner/Loser Theorem. For a set of candidates K, a constrainseind candidateeK, o
is a winner ovek iff there is a favoring hierarchy for, H(a) = (.7,..7,), exhaustingz.
aeW(K,X) = VCeX, Ce.7, for some7,eH(a).

Before advancing to the proof, it is useful to repeat the definition of ‘favoring hierarchy’ (see (32)
in 83.2 above). First we define ‘output of a set of favoring constraints’, the key building-block of the
favoring hierarchy definition.

(79) Def. Output of Favoring Stratum. Let.7(a,K,X) = {F,,..F,}cX be a set of favoring constraints
F for o overX with respect to K. Then by (K) we denote7~” (K), where.7~” is any ranking of the
constraints {k ,..F }.

Observe that the expressiof(K) is well-defined. From the Favoring Intersection Lemma (76), we
know that any rankingZ~” of .7 gives the same result when applied to a set K containingmely
nF (K), and.7,(K) denotes that unique result.

With this settled, the notion ‘favoring hierarchy’ can be recursively defined.

(80) Def. Favoring Hierarchy. Let K be any set of candidates includimgandX any set of
constraints. Let7(0,K,X) be a set of favoring constraints tooverX with respect to K. Then the
favoring hierarchyH(o) is a stratified hierarchy7,...7 ) where each favoring stratus is a non-
empty set of favoring constraints recursively defined as follows:

Base step: Comments:

K:;=K

D)

F,= F (0, K, X)) 1% fav. stratum = set of favoring constraints dasver K and®
Recursive step:

K = -7,(K) Next candidate set = co-winners of current favoring stratum

Y= - S, Next constrainset = current set minus current favoring stratum

F = F(0,K 1, 201) Next favoring stratum = favoring constraints éoover the new sets of

candidates and constraints

Remark. It is instructive to unfold the shape of hierarchy from the recursive definition. Notice first
that K., =.7.(K,) =7, (K,), where.7,,” is any ranking of7,, . From this we have, repeatedly
substituting for K :

Knir = FnlK) =70 (K
T (T 1 (K -)

(7.7 1K)
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Along the same lines, by repeated substitution we can unfold the definiiyn,of
21m+1 :Z}miym:(zm—li ym—1)7 ym
: 7%17 aen y

m

s U 7,
O<xY

Proof of TheoremVe start with the right to left entailmentuihas an exhaustive favoring hierarchy
over K andX, thena wins on some ranking. It is straightforward to construct such a ranking from
the favoring hierarchy itself.

Let H(a) =(.7,...7 ) be the favoring hierarchy forover K exhausting. Let R be any
refinement ofH, such that eachr,””is some arbitrary ranking of the constraints in.#gstratum.
By the remark on unfolding, K, =4,""...7, "] (K). But by the definition of favoring hierarchy,
we have it thatieK; for each K , the output of the favoring stratum. In particularpeK,,, . So
a is optimal on some ranking, and a winner.

We now prove the reverse entailment: i§ a winner, then it has an exhaustive favoring hierarchy.
The proof is a bit trickier, because the result is more contentful: it asserts that a winngy over
optimal on some ranking of shape unknown, will always be optimal on one particular kind of
ranking.

This conclusion is reached by repeatedly invoking the Favoring/Residue Lemma (74), which
asserts that it wins on a ranking R, thenwins over the hierarchy obtained from R by promoting
all favoring constraints far to the front. The same lemma can then be invoked in reference to the
residual hierarchy of nonfavoring constraints left behind by the fronting maneuver, this time fronting
the constraints that faverover the co-winners of the first favoring stratum, which still maintains
the optimality ofa. And so on, until there are no more constraints left to deal with. (This
construction mirrors RCD.) We show that the hierarchy produced in this fashion corresponds in fact
to a favoring hierarchy as defined in (80) and is exhausti¥k of

For purposes of the proof, it is useful to identify and define the intermediate product of the
construction: a ‘Quasi-Favoring Hierarchy' (QFH) toover K andX. Let us say that a ranking R

of X is a QFH of deptim for acK, if R can be partitioned into+1 segments, of which at least the

first n are non-empty, and where tkitsegment, fok<n, is precisely a ranking of the constraints in

the set7, as it is defined in (80). Let us call the inittasegments the ‘favoring section’ of the
ranking and the+1* segment the ‘residue’. The Favoring Hierarchyforer K andX is then the

QFH fora with a null residue. We now establish the following claimudR(K) for an arbitrary

ranking R oveiZ, thena is optimal for every quasi-favoring hierarchy GFH o¥en which the

residue is a set of constraints ranked according their order in R, including the case where the residue
is null.

AssumencW(K, ), that is:acR(K) for some R oveE.

[1] Let.7 =7 (0, K, Z)cX be the set of favoring constraints om R relative to K, which
we know to be non-empty by the Initial Favoring Lemma (66). Let FZ7][Z,]% be a hierarchy
where.7,> is any ranking ove#;, and [£,]® is a ranking of all the residual non-favoring constraints
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3, <X which respects their order in R. By construction, R is the®QFH of depthulof@r K and

% in which the constraints in the residkig are ranked according to their ranking in R. By the
Favoring/Residue Lemma (74), we haweR(K) = acR, (K). Thereforeq. is optimal for the QFF

of depth 1.

[2] Now suppose that we have a GFH daoverX and K of every dept for somem>1.
We have therefore achieved a ranking of the form R7£7...7 .71 [Z,.4]7 , for anm=1, where
aeR(K). If 2., = @, we are done, becausg,...7 ,,) then constitutes an exhaustive favoring
hierarchy fora over K andX, and there can be none of greater depth.

Let us assume then thal,,, # . We need to show thatnR can be extended to &#QFH of
depthm+1, preserving the optimality ef We know that.f7,”...7 . ”](K) = K., . Therefore by
Compositionality (54), we have

(") RuK) = [91»-- T I Zmd“(K)

= [Znd ([7177 70 1K) )
= [Znd (K -

Let us now gather all those constraint&in, that favoro with respect to K., . There must
be at least one such, for nonnll,, , becausecR,(K) is equivalent tac[Z,,,,]% (K., and by
Initial Favoring (66), E,..,]% must begin with a constraint that favarsver K_,,. We now have a
nonnull favoring stratun¥ ..., which precisely accords with the definition#f,., in (80). LetX,..,
=X —Zme Then by the Favoring/Residue Lemma,

(**) [ 21m+]] R(K m+) = ['/m+1 ][Em+ﬂ R(K m+)

We now set

(***) R m+(K) - [Jm+1 ][Em+J R(K m+)

and unfolding K., , we get

Rua(K) = [777 . T i M E i d " (K)

R, is therefore the QFH of deptir-1. Furthermore we have from (*) that R (KE:[ J%(K .
and from (**) and (***) [Z,..]%(K ,..)=R ,,..{K), hence R (K)=R,, (K), and R, has precisely the
same optima over K as,R . SineeR,(K), we haveneR,,,(K), as desired.

[3] From [1] and [2], it follows that there exists a QFH of every possible depth (up to
exhaustion oE) with the same optima as R. In particular, the QFH construction terminates in a
Favoring Hierarchy fos. This shows thaiteR(K) entails the existence of a favoring hierarchy for
a that exhaust&. [

We may now proceed with the complementary theorem on Bounding, which associates every
loser with a non-empty bounding set. For this purpose, we first prove as a lemm&tiodit-B i.g(
the collection of all residual candidates that strict bauod a residual constraint (see def. (40)) —
is a bounding set far relative to K an@. Let us first recall the relevant definitions.

(81) Def. Set of Residual Constraintsi-or any constraint seéi, and favoring hierarch¥((a) over
%, the set of residual constraints R&sis formed by all and only the constraints3irbut not in
H(a):

Resg) =X - {C: CeH(u)}
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(82) Def. Set of Residual Candidated-or any constraint séf, candidate set K, and favoring
hierarchyH(o)= (.7,...7,,) fora in K, the set of residual candidates Res(K) is formed by all and
only the candidates in K that co-win withon each favoring stratui#; :

Res(K) = [7,...7 1(K)

(83) Def. Maximal Bounding Set.For any constraint s&, candidate set K, andin K, let B"*(q)
be formed by all and only those candidates in the set of residual candidates Res(K) that are strictly
better tharu on some constraint in the set of residual constraint2IRes(

BY*(a) = {x : xcRes(K) anddCcResg) (x>a;C")}

With these in hand, we may show th#fB is indeed a bounding set.

(84) BM** Bounding Lemma. For any constraint se, candidate set K, and in K, BY*(qa)
constitutes a bounding set forelative toX and K.

Pf.  [1] B satisfies Strictness, since by definitigpeB"*, 3CcResE) (B>a;CH). .
[2] BM* satisfies Reciprocity: l€i be any member in'8* | then:

(1) for any C in ResX), if (a>f;C") then by definition of residual constraint, since no
residual constraint is favoring for over Res(K), we havaycRes(K) ¢>a;C"). By hypothesis,
yeBM®, thus B'™ satisfies Reciprocity over RB%(With this and [1] it follows that B* is a
bounding set foa. over Resk).

(i) Now, for any Cnot in Resg), it must be the case thet~@;C") by the
Equivalence Lemma (61), because by hypotheaisdp are residual candidates, hence co-winners
overH(a). Reciprocity is thus vacuously satisfied over aayH{u).

[3] Note finally that if B is a bounding set farover some set of candidateskS then B is
also a bounding set over K. (This holds because the definition of Bounding Set only mentions the
elements of the bounding set and their relatios; ibdoesn’t matter what other candidates are or
are not in the same set wittand the members of the bounding set.) Therefore, since B is bounding
over Res(K), it is also bounding ovepRes(K).

From [1], [2], and [3] it follows that B is a bounding set darelative to K and. [

The Bounding Theorem now follows straightforwardl{{*B  in fact guarantees a non-empty
bounding set whenevéi(a) does not exhaudt.

(85) Bounding Theorem For any constraint sél and candidate set K, a candidata K is
suboptimal on every ranking R ovEriff there is in K a non-empty bounding set B(z) for
z¢W(K,X) = B(z)»D

Pf. Let us start with the left-to-right entailment. By the Winner/Loser Theorem, the favoring
hierarchyH(z) cannot exhaug, hence Re3))#@. By definition, each residual constraint C allows
for a strict bound in Res(K) such thatd>z;C"). By definition, all suck are in B , hence '8

#@. Then, by the B Bounding Lemma/®  constitutes a non-empty bounding ze¢ifative

to K andX.
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Let us now prove the reverse implication: B@)— z¢W(K,X). For any ranking R=[C ...C ]
overZ, let D be thdeftmostconstraint for whiclz loses against a membeof B(z), i.e. (b>z;D").

We know that such D exists, because by hypothesis B(z) is non empty, and given strictness, for any
xeB(z) there is at least one constraint C on which (x>z;C"). It follows that R must have the shape
R=HDX. Then by Inclusion, R(K[HD](K). We now only need to prove thatoses on the initial

section R=HD, because shrinkage guarantees that once eliminated from the set of wicaienst

reenter it.

Assumez does not lose on’RSince (b>z;D"), it must be the case that for some higher
ranked constraint C in H it is the case that (z>b;C”). But by hypothesis B(z) satisfies reciprocity,
therefore there must exigtB(z) such thatf{>z;C"), contradicting the original hypothesis that D
was the leftmost such constraint. Theretm®’(K), thus by Inclusiorz¢é R(K), and since the above
reasoning applies to any ranking R o¥giit follows z¢W(K,X). [

5.2 Maximal and Minimal bounding sets

This final section is devoted to demonstrating the results on bounding sets. We begin by proving two
lemmas about Reciprocity and Strictness that underlay our informal discussion of favoring
hierarchies in §3.3. The first shows that non-residual candidates are inevitably nonmembers of any
bounding set (‘non-bounds’) because they necessarily fail Reciprocity. Tdrelsgwws that non-

bound status also extends via failure of Strictness to any candidate that is weakly bownded by

all residual constraint, i.e any candidatsuch thatd>;C) for all CcResg).

On the basis of these two lemmas, we proceed to prove the uniqueness and maximality of
the bounding set '8¢ . We then prove the Blocking Set and Minimal Bounding Set theorems,
showing how minimal bounding sets never use more than one residual candidate per residual
constraint, and conclude by showing that covering sets always include a bounding set.

The Reciprocity- and Strictness-Failure Lemmas are prpee@bsurdumshowing how
positing the existence of a bounding set containing the candidates at issue necessarily leads to a
contradiction.

(86) Reciprocity Failure Lemma. For any candidate set K, any constraint33eand anyu, let
Q(w)=[.7;..-7 |R be a quasi-favoring hierarchy farexhaustingt and with R:@. Then for any
BeK, if B is not a co-winner witlh on H(a)=[.7,...7 ], it is excluded from any bounding setofp(
relative to K andx.

Va,peK, B¢[7;...7 J(K) = VB(a) p¢B(a)

Pf.

[1] Assume there exists B, a non-empty bounding set tirer K andX, such thapeB for
some non-residu@ieK, and let us call Bthe set of all non residual candidates pilka B. Obviously
B’ is a subset of B and it is not empty, since it contains atfleast

[2] Let H™ be any ranking refining{(a)=[.7;...7]. From the Winner/Loser Theorem, we
haveacsH™>(K) and by Inclusiong also wins over any initial section | H™.
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[3] By hypothesisp¢[.7,...7 J(K). Let D be thehighest rankeatonstraint irtH™ such that
for somef in B, («>p;D"). Note that D must exist, becauseignon-empty, and since its members
are not residual candidates they must have been eliminated on some such D.

[4] By hypothesis, B satisfies Reciprocity, hence there must be f6nie such that
(B'>a;D?). But by [2] abovegel(K) for any initial section I=GD ofH™ ending with constraint D.
This implies thap’ is strictly bound by on some constraint’'Dhigher ranked than D in I, which
in turn implies thap’ is a non-residual candidate ir,, Bontradicting the hypothesis that D is the
highest constraint where strictly bounds a member of’Blt follows that B cannot satisfy
Reciprocity or, contradicting the hypothesis that B is a bounding(Set.

(87) Strictness Failure Lemma For any candidate set K and any constraint %et let
Q(w)=[.7,...7 R be a quasi-favoring hierarchy f@exhaustingz and with R a ranking over a non-
empty set of residual constraints R&s(Then, anys in K that does not strictly bounndon any of
the residual constraints in R is excluded from any bounding sgt@éative to K and.

Va,peK, VCeR, (B<a;C") = VB(a) p¢B(a)

Pf. Eitherp is a residual candidate in Res(K)g[...7 ](K) or it is not. If it is not, the result follows
directly from the Reciprocity Failure Lemma. Let us consider the case pdRRes(K), and assume
there exists a bounding set B includjhgmong its members.

[1] By hypothesisyC € Resg) it holds that f<a;C"), hence does not satisfy Strictness
on any constraint in RexJ.

[2] By definition of Res(K),p is a co-winner ofa in H(a)=[.7,...7,]. Therefore, by
EquivalenceyCeH(a) (B=a;C"), hencel cannot satisfy Strictness on any constraiit({n).

[3] Since there is no other constraintimther than those if{(a) and ResX), it follows
thatp cannot satisfy Strictness, contradicting the hypothesis that B is a bounding) set.

The above two lemmas form the core of the Maximal Bounding Set Theorem, stated below,
which asserts the maximality and uniqueness of the bounding®et B

(88) Maximal Bounding Set Theorem.For any constraint sél, candidate set K, and in K,
BY*(a) constitutes the unique maximal bounding setifoglative toX and K.

Pf. That B @) is a bounding set far relative to K anc follows from the B* -Bounding Lemma
(84).

[1] BM™(a) is maximal. By definition, all residual candidates in Res(K) that strictly bound
o on some constraintd®Resg) are in B §). It follows that any larger set'B necessarily includes
either a residual candidaiesuch thatd>0;C") for every C in Re&), or a non-residual candidate
y. The Strictness- and Reciprocity-Failure Lemmas ensure that B fails Strictnésarah
Reciprocity ony, thus not qualifying as a bounding setdfoHence B ¢) is the maximal bounding
set fora relative to K and.

[2] BM*™(0) is unique. In order to avoid being a subset'6f B), #ény maximal bounding set
B’ distinct from B' ¢) would have to include either a non-residual candigater a residual
candidate such thatd>5;C") for all C in Resf)). As shown in [2] above, this entails hon-bounding
status for B, showing the uniqueness ofB o)( [
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The next proof demonstrates that blocking sets —defined over a disfavoring constraint
systemA(a) by picking one strict bound feron each constraint— form a bounding set relative to
A. This result, independent from favoring hierarchies, is then used in the ensuing Minimal Bounding
Theorem to show that minimal bounding sets are always subsets of some blocking set defined over
the set of residual constraints Res(We first repeat the relevant definitions.

(89) Def. Disfavoring System.For any set of candidates K, a set of constraints Slisfaoring
system\(z) for a candidatecK iff on each constraint of S some elememt K strictly boundsz
A(z) ={C : CeS & JaeK, a>zin C}

(90) Def. Blocking Set.Let A(z) be a disfavoring system defined over some constraint set S and set
of candidates K, then’B is a blocking set Agr) iff for each constraint €S the set B contains
exactly one designated elemerthat strictly boundg on C.

We now demonstrate that disfavoring systems give rise to blocking sets that are bounding sets over
the constraints in the system.

(91) Blocking Set Theorem. For any candidate set K and disfavoring syst&fn), every
corresponding blocking set'B constitutes a bounding set B(z)\§zkr
VYA(z), B* = B(2)

Pf. The blocking set 8 satisfies Strictness avduy definition, since each of its members is a strict
bound ofa. for some C in\. Likewise B' satisfies Reciprocity, since for #imB* such that (zf;C")
there must be by definition a designated membBf* such thaty>z;C"). [J

Before examining the theorem on Minimal Bounding, it is worth recalling that the property
characterizing a blocking set is that each membedéesmnatedound for some constraint C, and
that this property does not exclude the possibility of multiple bounds for each constraint; see the
discussion of ex.(46) in 83.3. As for minimal bounding sets, remember that they may lack a strict
bound for some of the disfavored constraints, as in ex.(53) in 83.3.

The proof of the theorem examines all a priori logically possible articulations of minimal
bounding sets, rejecting some as yielding non-minimal sets, while showing all others to entail a
subset relation with some blocking set.

(92) Minimal Bounding Set Theorem.For any candidate set K, constraint send candidate
aekK, let B be a minimal bounding set ferover K and, then B is a subset of some blocking set
B’ over Rest) and drawn from Res(K).

Pf. Let B be a minimal bounding set relative to K &hdy the Maximal Bounding Set Theorem,
B<BY*(a), and hence by definition of'B* a) the set B consists entirely of residual candidates in
Res(K) that strictly bound on some constraint C in R&§( Let us consider all logically possible
hypotheses over the structure of B:
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[1] If B has a strict bounf for o for each €Resg), let B' be the set formed by picking for
each C one sucp from B. By construction, Bis a blocking set over Ra&s)( and therefore a
bounding set foa, given the Blocking Set Theorem. EitheriBa proper subset of B, in which case
B is not minimal against the initial hypothesis, 0B, and hence 8B’ completing the proof.

[2] Else, for some constraintdRes) the set B lacks a strict bouffidfor a. Only two
alternatives are given:

[2.1] If every element of B is a strict bound toeach on a distinct residual constraint
C+#D, then let B be the set formed by adding to B a strict boinfdr each constraint D for
which B has no strict bound for Note that by definition of ReX] there must be sudit
for each D. Then the newly formed sétiBa blocking set for ReXf over Res(K), and by
construction BB'.

[2.2] Else, B necessarily contains some elemevttich cannot be designated as the
strict bound of any constraint because each constraint C wjeagC,(*) is already
associated with some designated boginma B for which $>ao;C").

But then B is not minimal, contradicting the initial hypothesis: the proper subset
S=B-{v} is in fact a bounding set far overX. Since each member of B satisfies Strictness,
so does each member of its subset S. Moreover, S satisfies Reciprocity: since B is a bounding
set and given the propertiesyagxamined above/feS if 3C (a>p;C"), therdp’eS such that
(B'>a;C") andB=y. Hence B cannot be both minimal and have the structure described above.
[3] Any minimal set B must thus have the structure of either point [1] or point [2.1], both of

which were shown to entaildB’, with B’ a blocking set over ReS) and drawn from Res(K).J

Our last theorem concerns covering sets, i.e. set of candidates each guaranteed to beat some
elementy. on a specific ranking R of thré possible rankings of a constraint set of cardinalityhe
theorem is reformulated in terms of relative harmony over a ranking. We show that any covering set
COV(2) always includes a bounding setzB(The theorem is re-stated from 12.

(93) Covering Theorem Let COV(zxK be such that for every ranking R Bf there is an element
ccCOV(2), (c>z;R™). Then there is a non-empty ser)BCOV(2), with B(z) a bounding set far
VR (Z,R), JuecCOV(2), (@>z;R) = IB(z)»d, B(z=COV(z)

Pf. Let COV(z) be any set such th&R on, JacCOV(z) with (@>z;R”). Then COV(z) contains
a bounding set for z. Consider K= {zEOV(z).

Construct the favoring hierarctiy(z) over K. This favoring hierarchy cannot exhalistlse
VR’ refiningH(z), andvacCOV(z), we have (za;R'"), against the hypothesis that COV(z) contains
a candidate better than foon eaclpossible ranking oE.

Then the Maximal Bounding Theorem ensures the existence of a maximal bounding set
BY2(z) drawn from Res(K){z}, and since Res{)=@, by definition B (z}@, since each residual
constraint has at least one strict boundzfor

Since Res(K){z} cCOV(z), it follows B (z)c COV(z). O
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Appendix A. Relative Harmony as a Strict Order

We show here that relative harmony’ “is a strict order whose maximal elements are the optimal
candidates of the ranking over which"is defined. Recall the definition of relative harmony:

(94) Def. Relative Harmony. For any candidates x,y, let K={x,y}. We say:
x>y on a ranking R iff kR(K) and ¥ R(K).

For purposes of the proof we assume a constraint tetoatdied partial order. This allows to treat
membership in the same stratum of a given constraint as an equivalence relation. If we make only
the weaker assumption that a constraint is a partial order in which each subset has a maximal
element, we can still define optimality successfully in the way we have done it, but the proposed
definition of relative harmony no longer yields an order relation. To see this consider the following
hierarchy R = € >>C :

C" G"
al x b
I I
b X
I
a

. N .
We intend G " to impose onB>b so thatx is unorderg Wﬁh resh)g_ct t@ andb. Note thaix is

maximal in G ” as well ag. Consider now the fate of each paifi
R({a,x}) = X ‘x>a’
R({a,b}) = a ‘a>b’
R({b,x}) = b ‘b>x’

Transitivity fails and we have no order relation. With stratification of the constraint orders, however,
we are guaranteed that the definition of Relative Harmony produces an order, and a strict one.

(95) Relative Harmony is a Stratified Strict Order. Let x,y,ze K. Let R be a ranking on some set
of constraints, and let %" be the relative harmony relation. Then,

(a) “>"is irreflexive: - (x-X),

(b) “>~” is asymmetric xy = = (y>X)

(c) “>"is transitive: (xy & y>z) = (x>2).

(d) “>"is stratified:Va,b,eK, ~(a>-bV b >~a)= (a>x = b >x)

Let us start by showing that-* is a strict order, i.e. irreflexive and transitive. The proof of
transitivity requires working through some details, but the idea is straightforward and can be seen
clearly in the relevant comparative tableaux. Consider a tableauymnit consists of a number,
possibly zero, of blank cells, followed by a single box contairjrigliowed by a bunch of cells
whose content is irrelevant.

=y | . X




The tableau for yz has the same form. Clearly these tableaux can match up in three different ways.

(i) The initial blank portions are identical.

<y xR
XXX XXX
y>z y RNSNNNNNRNNRNIRRINN

Here we get x>y and y>z from the constraint whose column contains x and y. By definition of
‘constraint’, this is an order, so transitive, so x>z, and consequergly x

(i) The blank portion for yz is longer.

oy LR KEERRNNNNANARY
y-z y KON

Here we have x>y andky on the heavily-outlined central constraint. Therefore, since constraints
are assumed to be stratified orders, and since members of the same stratum share order properties,
we have x>z, and so-x.

(iif) The blank portion for xy is longer.

- | x RO
v v IS0

Here we have xy and y>z on the central heavily-outlined constraint, therefore x and y share order
properties, so x>z, SO-X.

We now go on to spell out the algebraic details of this argument.

(96) Relative Harmony is a Stratified Strict Order. Let x,y,ze K. Let R be a ranking on some set
of constraint, and let " be the relative harmony relation. Then

(@) “>"is irreflexive: - (x-X)

(b) “>" is asymmetric: = ( (xy) A (y >X))

(c) “>"is transitive: (xy & y>z) = (x>2)

(d) “>" is stratified:va,b,xK, =(a>bV b >a)= (a>X = b »X)

Pf. (a) Irreflexivity is immediate, since by the definition of”} x>-x iff xeR({x}) and

~(xeR({x})), an obvious contradiction.
(b) Asymmetry. Clear becauseR({x,y}) and -R({x,y}) are inconsistent.
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(c) Transitivity. Suppose-¥. Then xR({x,y}) and y¢R({X,y}). From the definition of
optimality, there must be at least one initial section H of R, such that R=[HCG] and such thaty is
strictly bound byx in C, i.e. x[HC]({x,y}) and y¢[HC]({x,y}). If there is more than one such
section, choose H to be the shortest such. By constructist{{>y}) and yeH({x,y}). By the
Equivalence Lemma, ¢y;C;) for every C in H. We have now divided R into 3 parts: an initial
section H, on whichxy, a constraint C on which they differ, with (x>y;C), and a coda G in which
their relations are undetermined (and immaterial to the argument).

Now suppose yz and repeat the analysis, yielding R=QH5’], with y=z on H, (y>z;C")
and G the uninformative coda.

Let us now investigate the possible relations of H tat C to C.

First, suppose H=H In this case C=Cand we have (x>y;C") and (y>z;C"). Therefore by
transitivity of > we have (x>z;C"). Furthermore, sineg/on all constraints in H and:y on all
such constraints, we have:z by transitivity of= in stratified hierarchies. Consider now the
candidate set K={x,z}. We must have x#(K). Since (x>z;C"), we haveefHC](K) and
z¢[HC](K). By Inclusion, xR(K) and zR(K). That is, xz, as desired

Next suppose H[HJ], J*Q, i.e. suppose that'Hs longer than H. In this case, we have
(y=z;C") becauseaz over all of H and C is in H. But since (x>y;C") and §z;C"), we have
(x>z;CM). Once again, since:¥=z over H, C will be the first constraint that distinguishes x and z,
favoring x. As before, this entails thatx as desired.

Finally, suppose that H=[H], i.e. that H is longer than’'HNow we have (xy;C'") since
C’ falls inside H. But we have (y>z:€) and therefore becausey (x>z;C"). As above, this leads
immediately to the conclusion thatx

(d) Stratification. Led, b in K be such that (b V b>a), which entails:

* (a<b A b<a).
Let x in K be such tha&>-x. Now consider the relation betwerrandb. First note that for any
ranking R and K={b,x}, R(K) has at least one winner, hdnaadx are ordered with respect to each
other in “-". It cannot be the case thatb, because in this case it would habeb by transitivity on
the strict order #”, against (*). Therefore, it must be the case khat The reverse entailment(b
= a-X) follows along the same lines onaés switched withb. [J

Now we show that optimal elements are maximal in the harmonic order and vice versa, under the
definition of optimality we have given.

(97) Optimality Maximality Lemma . ac R(K) iff a is a maximal element in the harmonic order
(K;>) induced by R on K.

Pf. Optimality= maximality. Suppose not. l.e. suppose tlaR (K) and there is aneK such
that x-a. Therefore, xR({x, a}) and a¢R({x,a}). This latter condition means that there is some
constraint C on which (xC”") so thabi¢ C({x,a}). Consider the highest ranked such constraint,
C". In the initial section H of R=[HC G], we cannot have any constraint on whichelsea>x. So
we must have xa on every constraint in H. Now, by assumpteaR(K), so from the Inclusion
Lemma,aeH(K). Therefore xH(K). Sobothx anda are in H(K). By the definition of constraint
evaluation, we must hawer[HC"|(K), implying a¢R(K). Contradiction.
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Maximality = optimality. If o is maximal, then for every 2 element sepd <K , we have
aceR({a,x}). Let w be an optimal form on R, which by what was just shown must also be maximal.
Now consider the candidate setd}. By maximality ofa andw, we have it thaé,weR({a,w}).

By Equivalenceg~w on all constraints of R. Therefosemust also be optimal]

Appendix B. The Relation between Simple and Collective Harmonic Bounding

The specific-to general relation between simple and collective harmonic bounding emerges in its full
clarity as soon as we define both notions through more purely order-theoretic concepts, such as the
following notion of a ‘strict bound’ for a set, which states that an elemstriictly’ bounds a set

Swhen it is better than or order-equivalent to all the elements of S, and on top of that strictly better
than at least one of them.

(98) Def. Strict Bound for a Set An elemenbeK is astrict boundfor ScK iff
(1) b is a bound for S fkx, for all xeS), and
(2) b>x forsomexesS.

Simple harmonic bounding may then be restated as shown below. Note that condition (1)
below is equivalent to the original Strictness condition, demanding#zain some constraint.
Likewise, condition (2) is equivalent to the original weak-boundingitionddemanding tha>z
on all constraints.

(99) Def. Harmonic Bounding. A candidateeK is harmonically boundeil there exists a candidate
SeK meeting two conditions:

(1) Strictness £ is a strict bound forZ} on at least one constraint ia

(2) Weak Bounding. zisnota strict bound for4} on any constraint irx.

The generalization to bounding sets is immediate and requires nothing more than extending to a set
B the same two conditions defining harmonic bounding.

(100) Def. Bounding SetA set B=K is a bounding set B(z) faeK relative to a constraint st
iff B has these properties:

(1) Strictness EverypeB is a strict bound for} on at least one constraint

(2) Reciprocity. zisnota strict bound for B on any constraintin

Condition (2) states that on any constraia®Gt shouldnot be the case that (#beB, (z>b;C), and

(i) dbeB, (z»b;C). This is equivalent to requiring for all C Yhthateither (i) 3beB, (b>zC"), or
(i) VbeB, (b>zC"), which in turn is equivalent to the original Reciprocity condition.
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