
CHAPTER 2 

 

A RANK-ORDERING MODEL OF EVAL 
 

An Optimality Theoretic grammar (Prince and Smolensky, 1993) consists of three major 

components, namely a generative function (GEN), a universal set of constraints (CON), 

and an evaluative function (EVAL). GEN is a universal function that generates a 

candidate set for any given input. CON contains all of the constraints that make up 

Universal Grammar. EVAL uses the constraints in CON to compare the candidates 

generated by GEN with each other in order to determine the output associated with an 

input. EVAL can therefore be considered as the center of an OT grammar – this is where, 

given the candidate set and the constraints, the output of the grammar is determined.  

In this chapter of the dissertation I investigate the formal properties of EVAL in 

more detail. Specifically, I develop a set theoretic model of EVAL. This chapter serves 

two purposes: (i) In the rest of this dissertation I will argue that EVAL works somewhat 

differently from what has traditionally been assumed in the OT literature. I will make two 

claims about EVAL. First, rather than just distinguishing between the best candidate and 

the mass of losers, EVAL imposes a harmonic rank-ordering on the full candidate set. 

Secondly, EVAL can compare any set of candidates, irrespective of whether they are 

related to each via a shared input or not. (For more on these two claims, refer to Chapter 

1.) This chapter shows that this alternative view of EVAL is entirely compatible with the 

architecture of a classic OT grammar and does not require any formal changes to the 

architecture of the grammar. (ii) But this chapter also serves the more general purpose of 

providing a mathematical model of EVAL. Once EVAL is formulated as a mathematical 
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object, many of the assumptions about an OT grammar that are implicitly part of OT 

literature, can be explicitly stated and formally proved. 

 The basic approach in this chapter is that of “explication” which Carnap defines 

as “transforming a given more or less inexact concept into an exact one, or rather, 

replacing the first by the second” (Carnap, 1962:3). Carnap calls the inexact concept that 

explication sets out to formalize the “explicandum”, and the result of the explication 

process the “explicatum”. The goal of this chapter is therefore not to propose a new 

theory of grammar, but rather to express in explicit, formal terms what is generally 

accepted about OT. Since explication is basically a descriptive activity, it is quite hard to 

decide whether the explicatum is “correct” or not (Carnap, 1962:4).1 The correctness of 

the explicatum should be measured by how well it resembles the explicandum. However, 

since the explicandum is by definition not an exact, precise concept, it is difficult (if not 

in principle impossible) to determine whether the explicatum exactly fits the explicandum. 

Even so, we should be confident that the explicatum at least agrees with our basic 

intuitions about the explicandum. Throughout the discussion, I will therefore point out 

how the model of EVAL that I am developing resembles what is standardly accepted 

about an OT grammar.  One of the most characteristic features of an OT grammar is the 

so-called “strictness of strict domination” principle (McCarthy, 2002b:4, Prince and 

Smolensky, 1993:78, 1997:1604). I will therefore in particular show that the model of 

EVAL developed here abides by this principle (see §3.2.1). 

                                                 
1  See also Kornai (1995:xix-xxi) for a discussion of this same problem specifically with regard to 

formalizing linguistic theories. 

 30



The chapter is structured as follows: In §1 I give a short review of how the rank-

ordering model of EVAL is different from what is usually assumed about EVAL in OT 

literature. I also discuss previous mathematical formalizations of EVAL, and show that 

they are not consistent with a rank-ordering model of EVAL. Section §2 gives a 

characterization of constraints as functions from the candidate set into ù, and then shows 

how the candidate set can be ordered with respect to individual constraints. In §3 I show 

how the orderings associated with individual constraints are combined into one single 

ordering for the whole grammar. The chapter ends in two appendices. Appendix A 

contains a list of all the definitions used in the chapter, and Appendix B a list of the 

theorems and lemmas formulated.  

This chapter is somewhat independent from the rest of the dissertation. Since it 

contains many results about an OT grammar that are not directly relevant to the rest of 

the dissertation, it can be read as a self-contained unit without reading the rest of the 

dissertation. Similarly, the rest of the dissertation can also be read without reading this 

chapter. Any of the issues discussed in this chapter that are relevant elsewhere in the 

dissertation, are also discussed where they are relevant. However, this chapter contains 

the only comprehensive formal treatment of the theoretical assumptions made in this 

dissertation. Reading this chapter will enhance the overall understanding of the 

theoretical claims. Readers who are not mathematically inclined may either skip this 

chapter completely, or jump ahead in this chapter to §4. In section §4 I provide a brief 

summary the chapter, and point out which of the results of this chapter will be relevant in 

the rest of the dissertation. 
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1. A rank-ordering model of EVAL 

Classic OT is a theory of winners. It makes only one distinction in the candidate set, 

between the winning candidate and the mass of losers. Once a candidate has been 

eliminated from the race, it is demoted to the set of non-optimals or losers. And once in 

this set of losers, all information supplied about the candidate by the constraints becomes 

irrelevant. All losers are treated alike – as members of one large amorphous set. 

 This standard view of an OT grammar is held in spite of the fact that the theory 

can make finer grained distinctions in the candidate set. If we remove the optimal 

candidate from a candidate set and consider only the set of losers, then there will again be 

a candidate that is better than all the rest. This best candidate amongst the losers can then 

be removed, and we can repeat the comparison again to find the best candidate in the 

remaining smaller set of losers. In fact, this process can be repeated for as long as there 

are still candidates left, and we can therefore rank-order the full candidate set in this way.  

These two views about the output of an OT grammar are represented graphically 

in (1). Candidates appearing higher are more harmonic relative to the constraint ranking. 

The “alternative view” is the view that I am assuming in this dissertation. 

(1) Standard OT view Alternative view 
 {Canx} {Canx} 
   
 {Cany, Canz, Canw, …} {Cany} 
   
  {Canz} 
   
  {Canw} 
   
  … 
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 Since the information about the relationships between losers is considered 

irrelevant in classic OT, previous mathematical models of EVAL were formulated to 

ignore this information. These models can be divided into two groups: (i) models that are 

formulated such the information about the relationships between the non-winners is not 

generated at all; (ii) models that generate this information but ignore it. I will discuss one 

example of each kind here. 

 As an example of the first kind, consider the model developed by Samek-

Lodovici and Prince (1999, Prince, 2002). They view constraints as functions from sets of 

candidates to sets of candidates. A constraint takes as input a set of candidates and returns 

as output the subset consisting of those candidates that perform best on the particular 

constraint. All other candidates are demoted to the set of losers, irrespective of how they 

are related to each other. The set of losers might contain candidates that violate the 

particular constraint only once and also candidates that violate the constraint many times. 

No distinction is made between losers. EVAL is then simply a composition of the 

different constraint functions in the order in which they are ranked. For instance, if K is 

the candidate set generated by GEN, and ||C1 o C2 o … o Cn|| the constraint hierarchy, 

then EVAL will have the form (Cn B … B C2 B C1)(K) = Cn(…C2(C1(K))). EVAL then 

returns only the single best (set of) candidate(s) as output. The complement in K of the 

set returned by EVAL is the set of losers. But no information is available about how the 

candidates in this set of losers are related to each other. Other models that were 

developed along similar lines are those of Eisner (1997a, 1997b, 1999), Hammond (1997) 

and Karttunen (1998). 
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 Moreton (1999) has a different conceptualization of EVAL, and his model serves 

as an example of the second type of model of EVAL. In Moreton’s model the information 

about the relationships between losers is generated but ignored. The end result is that his 

model still makes only a two-level distinction in the candidate set. For Moreton, 

constraints are functions from the set of candidates into ù. A constraint takes a single 

candidate as input, and then maps the candidate onto the natural number corresponding to 

the number of times that the candidate violates the particular constraint. The fact that 

constraints are functions on the candidate set implies that every constraint applies to 

every candidate. This is the crucial difference between Moreton’s model and the models 

discussed above. In the other models, every constraint prunes the candidate set down so 

that later constraints may not get the opportunity of applying to the full candidate set. 

Since all constraints evaluate all candidates in Moreton’s model, the losers can in 

principle also be compared with each other. However, as shown below, Moreton 

conceptualizes EVAL in such a way that this does not happen. 

Moreton defines for each candidate a score vector. The score vector of a 

candidate consists of the number of violations afforded the candidate by each of the 

constraints, ordered according to the ranking between the constraints.  For instance, 

consider a constraint hierarchy ||C1 o C2 o C3||, and a candidate k that violates C1 once, C2 

three times, and C3 twice, i.e. C1(k) = 1, C2(k) = 3, and C3(k) = 2. The score vector 

associated with k is then vk = 〈C1(k), C2(k), C3(k)〉 = 〈1, 3, 2〉. Every candidate has such a 

score vector associated with it. Score vectors are compared as stated in (2). 
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(2) Comparing score vectors in Moreton’s model 

Let v = 〈s1, s2, …, sn〉 and v’ =  〈s’1, s’2, …, s’n〉 be score vectors.  

We say that v < v’ iff ∃ j ≤ n such that: 

(i) ∀ i < j:  si = s’i, and 

(ii) sj < s’j

 The score vector of some candidate k1 precedes the score vector of some other 

candidate k2 if the highest ranked constraint that judges the two candidates differently 

favors k1 over k2. Moreton then defines the output of the grammar (of EVAL) for some 

input as that candidate whose score vector precedes the score vectors of all other 

candidates. Although the information about the relationships between the other 

candidates is generated, this information is ignored in the final output of the grammar 

where only the best candidate is distinguished from the mass of losers. De Lacy has a 

similar characterization of constraints (de Lacy, 2002:30).  

 These earlier models are therefore not compatible with a rank-ordering model of 

EVAL. Models like that of Samek-Lodovici and Prince (1999) are in principle 

incompatible since they do not even generate the information that would be required to 

rank-order the full candidate set. Models such as those of Moreton (1999) generate this 

information and are therefore in principle compatible with a rank-ordering model of 

EVAL. However, these models are formulated in such a way that this information is 

ignored. 

 In the rest of this chapter I will develop a model of EVAL that generates the 

information about the relationships between the losers, and also uses this information 
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explicitly to impose a rank-ordering on the full candidate set. Although Moreton’s model 

can in principle be extended to do this, I choose to formulate a model that is different 

from Moreton’s. In Moreton’s model, comparison between candidates is done in terms of 

score vectors. In the model that I develop comparison is done in terms of individual 

constraints – every constraint imposes a rank-ordering on the candidate set, and the 

orderings associated with different constraints are then combined to yield a final ordering 

for the full grammar. EVAL orders the candidate set in two stages, first in terms of 

individual constraints and then by combining the orderings associated with individual 

constraints. The next two sections discuss each of these two stages in the ordering 

process. 

 

2. EVAL and the ordering associated with individual constraints 

The comparison that EVAL makes is based on the violations that the constraints assign to 

each candidate. Before we can consider the properties of EVAL, it is therefore necessary 

to have a clear idea of what constraints are. In this section I will first characterize 

constraints, and only then show how EVAL orders the candidate set with respect to 

individual constraints. 

2.1 Characterization of constraints 

A constraint considers each of the candidates generated by GEN separately, and evaluates 

that candidate according to some substantive requirement. A constraint assigns a 

violation mark to a candidate for every instance of non-compliance of the candidate with 

the specific substantive requirement of that constraint. A constraint therefore sets up a 
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relation between a candidate and a number of violations. We can regard the domain of 

this relation as the set of all candidates, and its range as a subset of ù, the natural 

numbers. Constraints can then be characterized as in (3). 

(3) Constraints as relations between the candidate set and ù 

Let CON be the universal set of constraints, and K the set of candidates to be 

evaluated. Then, ∀C ∈ CON: 

 C: K → ù such that ∀ k ∈ K, C(k) =  number of violations of k in terms of C 

 This characterization of constraints is basically the same as that assumed by 

Moreton (1999).2 However, it is significantly different from the view taken by Samek-

Lodovici and Prince (Prince, 2002, Samek-Lodovici and Prince, 1999). For them, 

constraints take as argument not individual candidates, but sets of candidates. Also, a 

constraint does not return a natural number as its value, but a subset of the candidate set 

that it took as argument. (See discussion above in §1.)  

                                                 
2  It is also in principle identical to the way that de Lacy (2002:30) defines constraints. For de Lacy a 

constraint is a relation that takes as input a candidate, and returns not a natural number but a set of 
violation marks.  Comparison between candidates is then done by comparing the cardinality of the sets 
of violation marks of each candidate. However, since a repeated identical element in a set does not 
change the set (i.e. {*} = {*, *, *, …}), de Lacy has to introduce a method to make multiple violation 
marks distinct. He needs a way in which a set with n violation marks will have a cardinality of n. This 
is his solution: “To avoid this problem, take a ‘violation mark’ to be any element from a denumerably 
infinite set of discrete elements (e.g. the natural numbers). Thus, a set of three violation marks is 
{1,2,3}, with a cardinality of 3.” (2002:30).  A constraint is then a relation that maps each candidate 
onto a set with cardinality equal to the number of times that the candidate violates the constraint. 

This is in principle identical to the characterization of constraints that I give in (3) above. The 
natural numbers can be reconstructed in set theoretic terms such that each natural number is simply a 
set with cardinality equal to the specific natural number, i.e. the natural number n is a set with 
cardinality n (Enderton, 1977:66-89). When we think about the natural numbers in set theoretic terms, 
then the way in which constraints are characterized above in (3) can be seen as relations that map each 
candidate onto a set with cardinality equal to the number of times that the candidate violates the 
constraint. De Lacy’s characterization of constraints is therefore only superficially different from the 
view that I take.  
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Based on some generally accepted properties of an OT grammar we can show that 

constraints are functions. The definition of a function in (4) comes from Partee et al. 

(1993:30). 

(4) Def. 1: Functions  

A relation R from A to B is a function iff: 

(a) the domain of R = A (i.e. every member of A is mapped onto some 

member of B), and 

(b) each element in A is mapped onto just one element in B (R is single 

valued). 

(5) Theorem 1: Constraints as functions 

 All constraints are functions. 

It is not possible to prove Theorem 1. The truth of this Theorem does not follow 

from some inherent property of what it means to be a constraint, but from the way in 

which constraints are conventionally formulated in OT. The discussion in this paragraph 

is therefore not a proof, but only illustrative in nature. In order for (4a) to hold of 

constraints, it is necessary that every constraint assign some value to every candidate. 

This follows from the assumption that a constraint applies even to candidates that do not 

violate the constraint – it assigns the natural number zero to these candidates. In order for 

(4b) to hold, a constraint should assign a unique value to each candidate. This is 

obviously true. A candidate violates a constraint a fixed number of times, and this 

number of violations is the only value that the constraint can assign to a candidate.  
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Throughout this chapter I will use an example to illustrate the concepts that I 

discuss. In this example I will assume a grammar with only three constraints, i.e. CON = 

{C1, C2, C3} and only five candidates, i.e. K = {c1, c2, c3, c4, c5}. I will also assume a 

specific ranking between the constraints, namely ||C1 o C2 o C3||. The tableau in (6) 

shows how each of the five candidates is evaluated by the three constraints in this 

example. 

(6) {c1, c2, c3, c4, c5} evaluated by ||C1 o C2 o C3|| 

  C1 C2 C3

 c1 * **  

 c2 ** * * 

 c3  * ** 

 c4 * **  

 c5 **  ** 

 In (3) constraints were characterized as relations between K and ù. This can now 

be illustrated: Since c1 violates C1 once, it means that C1 will map c1 onto the value 1, i.e. 

C1(c1) = 1. Similarly, C1(c2) = 2, C1(c3) = 0, etc. We can do the same for all three 

constraints and all five candidates. We can also represent each constraint as a set of 

ordered pairs 〈x, y〉 where x is a candidate and y the value onto which the constraint maps 

y. In (7) I show these sets of ordered pairs for every constraint. 

(7) Constraints as relations between K and ù 

 C1 = {〈c1, 1〉, 〈c2, 2〉, 〈c3, 0〉, 〈c4, 1〉, 〈c5, 2〉} 

C2 = {〈c1, 2〉, 〈c2, 1〉, 〈c3, 1〉, 〈c4, 2〉, 〈c5, 0〉} 

C3 = {〈c1, 0〉, 〈c2, 1〉, 〈c3, 2〉, 〈c4, 0〉, 〈c5, 2〉} 
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Theorem 1 (5) stated that constraints are functions. It is clear that the relations in 

(7) are functions. First, each of the five candidates in K is represented by an ordered pair 

in each of these sets. Secondly, every candidate is mapped onto only one value. 

2.2 Ordering the candidates with respect to individual constraints 

A constraint sees candidates only in terms of their violations. Two candidates that earn 

the same number of violations in terms of some constraint are therefore indistinguishable 

from each other as far as that constraint is concerned.3 This means that the two candidates 

[a.ta] and [pu.i.ma], although they are clearly distinct, cannot be distinguished in terms of 

the constraint ONSET (every syllable must have an onset). Both of these candidates 

contain one onsetless syllable, and they are therefore both mapped onto the same value 

by the constraint ONSET, i.e. ONSET([a.ta]) = ONSET([pu.i.ma]) = 1. Although these two 

candidates are distinct, they share with each other all ordering relationships in terms of 

the constraint ONSET to the rest of the candidate set. 

When we consider the ordering that EVAL imposes on the candidate set with 

reference to a specific constraint, it is therefore not necessary to consider an ordering that 

refers to every candidate individually. Rather, the ordering can be viewed as an ordering 

defined on sets of candidates, specifically on sets of candidates that share the same 

number of violations. This leads to a significant simplification by reducing the number of 

discrete elements that need to be compared. 

This can also be illustrated with the example introduced from (6) above. In this 

example candidates c2 and c5 are clearly distinct – since they violate C2 and C3 to 

                                                 
3  See Samek-Lodovici and Prince (1999) about such “grammatically indistinct” candidates. Sections 

§2.2.1 and §3.2.5 below contain more discussion of grammatical indistinctness in OT. 
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different degrees. Even so, in terms of C1 they are indistinguishable – they both violate 

C1 twice. Candidates c2 and c5 will therefore occupy the same slot in the ordering that 

EVAL imposes on the candidate set in terms of C1. The same is true of candidates c1 and 

c4. In the same manner we can also establish the ordering that each of C2 and C3 will 

impose on the candidate set. In (8) I represent the orderings associated with each of these 

constraints graphically. Candidates (more accurately, sets of candidates) that appear 

higher in this graphic representation are rated better by the particular constraint. 

(8) Orderings imposed by EVAL on candidate set in terms of C1, C2 and C3

   C1       C2        C3

   {c3}      {c5}   {c1, c4}

 {c1, c4}  {c2, c3}    {c2} 

 {c2, c5}  {c1, c4}  {c3, c5} 

 Since this ordering is clearly on sets of candidates and not on candidates, the first 

thing we need to do is to gather individual candidates into the sets on which the ordering 

is defined. The candidates in each of these sets are those candidates with the same 

number of violations in terms of the specific constraint. We can therefore define a 

relation that will express what the candidates in each of these sets have in common. 

(9) Def. 2: The relation ≈C on K  

Let K be the candidate set to be evaluated by EVAL, and CON the set of 

constraints. 

Then, for all k1, k2 ∈ K, and for all C ∈ CON, let: 

 k1 ≈C k2    iff  C(k1) = C(k2). 
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Consider C1 in the example discussed above. Candidates c1 and c4 both earn 1 

violation in terms of C1, i.e. C1(c1) = C1(c4) = 1. From this it follows that c1 and c4 stand 

in the ≈C1–relation to each other, or c1 ≈C1 c4. Since = is reflexive, we of course also have 

c4 ≈C1 c1. And since = is also symmetric we also have ci ≈C1 ci for each candidate ci. In the 

same way the ≈Ci-relation can be determined for each constraint. In (10) I show these 

relationships for each of the constraints. 

(10) ≈C-relations for each constraint 

 C1(ci) =  0: c3 ≈C1 c3

C1(ci) =  1:  c1 ≈C1 c4, c4 ≈C1 c1,  c1 ≈C1 c1, c4 ≈C1 c4

C1(ci) =  2: c2 ≈C1 c5, c5 ≈C1 c2, c2 ≈C1 c2, c5 ≈C1 c5

 C2(ci) =  0: c5 ≈C2 c5

 C2(ci) =  1: c2 ≈C2 c3, c3 ≈C2 c2,  c2 ≈C2 c2, c3 ≈C2 c3

 C2(ci) =  2: c1 ≈C2 c4, c4 ≈C2 c1,  c1 ≈C2 c1, c4 ≈C2 c4

C3(ci) =  0: c1 ≈C3 c4, c4 ≈C3 c1,  c1 ≈C3 c1, c4 ≈C3 c4

 C3(ci) =  1: c2 ≈C3 c2,  

 C3(ci) =  2: c3 ≈C3 c5, c5 ≈C3 c3, c3 ≈C3 c3, c5 ≈C3 c5

We can show that the relation ≈C is an equivalence relation, which basically 

means that two elements that stand in the ≈C-relation to each other are indistinguishable 

from each other in terms of this relation. In (11) I state the requirements that must be met 

for a relation to be an equivalence relation (Enderton, 1977:56), and in (12) I then show 

that ≈C is indeed an equivalence relation. 
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(11) Def. 3: An equivalence relation 

A binary relation R on some set is an equivalence relation on that set iff R is  

(i) reflexive, (ii) symmetric, and (iii) transitive. 

(12) Theorem 2: ≈C as an equivalence relation 

For all C ∈ CON, ≈C is an equivalence relation on K. 

 This is obviously true. ≈C is by definition a binary relation. Also, ≈C is defined in 

terms of the relation = on ù, and = is reflexive, symmetric and transitive on ù. The 

relation ≈C therefore inherits these properties from =.   

Since ≈C is an equivalence relation, we can use ≈C to define equivalence classes 

(Enderton, 1977:57) on the candidate set. An equivalence class in terms some 

equivalence relation R is a set containing all the forms that stand in the relation R to each 

other. In terms of the relation ≈C there will therefore be an equivalence class containing 

the candidates that earn zero violations in terms of C, a class containing the candidates 

that earn one violation in terms of C, a class containing the candidates that earn two 

violations in terms of C, etc. 

(13) Def. 4: Equivalence classes on K in terms of ≈C

 For all k1 ∈ K, ƒk1„C := {k2 ∈ K | k1 ≈C k2} 

 Every candidate k1 will therefore be grouped together into a set (an equivalence 

class) with all the other candidates that receive the same number of violations as k1 in 
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terms of C. In (14) I show the equivalence classes that are defined on K in terms of each 

of the ≈C-relations in our example grammar from (6). 

(14) Equivalence classes on the candidate set in terms of ≈C-relations 

 C1(ci) =  0:  ƒc3„C1   = {c3} 

C1(ci) =  1:  ƒc1„C1 = ƒc4„C1   = {c1, c4} 

C1(ci) =  2:  ƒc2„C1 = ƒc5„C1  = {c2, c5} 

C2(ci) =  0:  ƒc5„C2   = {c5} 

 C2(ci) =  1:  ƒc2„C2 = ƒc3„C2  = {c2, c3} 

 C2(ci) =  2:  ƒc1„C2 = ƒc4„C2   = {c1, c4} 

C3(ci) =  0:  ƒc1„C3 = ƒc4„C3  = {c1, c4} 

 C3(ci) =  1:  ƒc2„C3    = {c2} 

 C3(ci) =  2:  ƒc3„C3 = ƒc5„C3  = {c3, c5} 

The ordering that EVAL imposes on the candidate set will be defined in terms of 

these equivalence classes – i.e. EVAL does not order candidates directly, but rather 

orders equivalence classes of candidates. However, orderings are defined on elements of 

a set, and at this moment these equivalence classes do not form a set. The next step we 

need to accomplish is therefore to collect all of the equivalence classes into one set on 

which the ordering can then be defined. The set that has as its members all of the 

equivalence classes on some set A in terms of some equivalence relation R, is known as 

the quotient set of A modulo R (Enderton, 1977:58). We can define such a quotient  

set on the candidate set K modulo the equivalence relation ≈C. The definition is given in 
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(15), and the quotient sets associated with each of the constraints in our example are 

given in (16). 

(15) Def. 5: Quotient set on K modulo ≈C

 K/C := {ƒk„C | k ∈ K} 

(16) Quotient sets on K modulo ≈C for each constraint 

 K/C1 = {{c3}, {c1, c4}, {c2, c5}} 

 K/C2 = {{c5}, {c2, c3}, {c1, c4}} 

 K/C3 = {{c2}, {c1, c4}, {c3, c5}} 

 We are now finally in a position to define the ordering that EVAL imposes on 

(the quotient set on) the candidate set. In this ordering the equivalence class with the 

candidates that receive the smallest number of violations in terms of C will occupy the 

first position (will be the minimum, will precede all other equivalence classes), next will 

be the equivalence class with candidates that receive the second smallest number of 

violations in terms of C, etc. 

(17) Def. 6: The ordering relation ≤C on the set K/C 

 For all C ∈ CON and all ƒk1„C, ƒk2„C ∈ K/C: 

  ƒk1„C ≤C ƒk2„C iff C(k1) ≤ C(k2). 

 Equivalence class ƒk1„C “precedes” or “is better than” equivalence class ƒk2„C if the 

candidates belonging to ƒk1„C receives fewer violations in terms of C than the candidates 

belonging to ƒk2„C. The ordering ≤C that each of the constraints in our example imposes 
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on the candidate set is shown in (18). Note that this is exactly the same as the orderings 

shown in (8) above.  

(18) The ≤Ci-ordering that EVAL imposes on each quotient set K/Ci

     C1       C2        C3

   {c3}      {c5}   {c1, c4}

 {c1, c4}  {c2, c3}    {c2} 

 {c2, c5}  {c1, c4}  {c3, c5} 

 The relation ≤C imposes an ordering on the quotient set K/C resulting in the 

ordered set 〈K/C, ≤C〉 for each constraint. This set is the output of EVAL with respect to 

constraint C. Since the output of EVAL with respect constraints is defined in terms of the 

set K/C and ordering ≤C, the characteristics of this set and ordering are important. In the 

next few sub-sections I discuss those characteristics of this set and ordering that are most 

directly relevant to our understanding of what a grammar is. First, I discuss the relation of 

individual candidates to the ordered set 〈K/C, ≤C〉 (§2.2.1). Then I show that the ordering 

defined by ≤C is a chain (§2.2.2), and that this chain is guaranteed to always have a 

minimum (§2.2.3). Finally, I show that the set K/C is a partition on K (§2.2.4). The 

relevance of each of these results is discussed in the respective sections. 

2.2.1 Individual candidates in the set 〈K/C, ≤C〉 

The ordering ≤C was defined in (17) above in terms of equivalence classes of candidates 

and not in terms of candidates. However, in actual practice we are usually interested in 

the relationship between candidates, and not between equivalence classes of candidates. 

In this section I will show that it is trivial matter to move from the ordering relationship 
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between equivalence classes of candidates to the relationship between individual 

candidates. It therefore does not matter whether we think of the ordering that EVAL 

imposes as an ordering on equivalence classes of candidates, or as an ordering on the 

individual candidates. I will first define an ordering on individual candidates in terms 

some constraint (this is the ordering that we are interested in when we actually do 

grammatical analyses), and then I will show that it is a trivial matter to move from the 

ordering on equivalence classes of candidates to this ordering on individual candidates. 

(19) Def. 7: The ordering relation ≤C' on the set K 

 For all C ∈ CON and all k1, k2 ∈ K: 

  k1 ≤C' k2 iff C(k1) ≤ C(k2) 

 The ordering ≤C' is intuitive – k1 “precedes” or “is better than” k2 if and only if k1 

receives fewer violations in terms C than k2. The ordering ≤C' therefore defines a ordering 

on the candidate set K, resulting in the ordered set 〈K, ≤C'〉. In (20) I give a graphic 

representation of the ≤C'-orderings associated with each of the three constraints in our 

example. In this representation a candidate that appears higher precedes a candidate that 

appears lower – i.e. if k1 appears higher than k2, then k1 ≤C' k2. If two candidates appear 

next to each other, then they are equal in terms of the ordering – i.e. if k1 appears next to 

k2, then k1 =C' k2. 

There is a natural relationship between the ordering ≤C' on candidates and the 

ordering ≤C on the equivalence classes – k1 ≤C' k2  is only possible if  ƒk1„C ≤C ƒk2„C and 

vice versa. That this is the case is obvious – these two orderings are defined by the same 

condition, i.e. if and only if C(k1) ≤ C(k2), then k1 ≤C' k2 and ƒk1„C ≤C ƒk2„C. 
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(20) The ≤c'-ordering that EVAL imposes on the candidate set for each constraint 

C1    C2    C3

c3       c5      c1               c4 

  c1               c4       c2                c3   c2

  c2                c5       c1            c4     c3                 c5

Because of this natural relationship between these two orderings it is a trivial 

matter to move from the ordered set 〈K/C, ≤C〉 to the ordered set 〈K, ≤C'〉. Suppose that we 

have only the ordered set 〈K/C, ≤C〉, i.e. the set that contains not candidates but 

equivalence classes of candidates. Suppose further that we want to know how two 

candidates k1 and k2 are related to each other in terms of the ordering on individual 

candidates ≤C'. All we need to do is to find the equivalence classes ƒk1„C and ƒk2„C. If ƒk1„C 

<C ƒk2„C, then also k1 <C' k2. If ƒk1„C =C ƒk2„C, then also k1 =C' k2. If ƒk1„C >C ƒk2„C, then also 

k1 >C' k2. This can easily be proven formally. What we need is to show that there exists an 

order-embedding mapping from 〈K/C, ≤C〉 to 〈K, ≤C'〉. In (21) I first define what an order-

embedding mapping is. In (22) I then define a mapping ψ from 〈K/C, ≤C〉 to 〈K, ≤C'〉. In 

(23) I show the result of applying ψ to the ordered sets 〈K/C, ≤C〉 associated with each of 

the constraints in our example. Following that, I show that this mapping ψ is an order-

embedding. The definition of an order-embedding is from Davey and Priestly (1990:10). 

(21) Def. 8: An order-embedding 

Let P and Q be ordered sets. A map ϕ: P → Q is said to be an order-embedding if 

x ≤ y in P iff ϕ(x) ≤ ϕ(y) in Q. 
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(22) Def. 9: A mapping from 〈K/C, ≤C〉 to 〈K, ≤C'〉 

ψ:〈K/C, ≤C〉 → 〈K, ≤C'〉 such that: 

For all ƒkx„C ∈ K/C and for all ky ∈ ƒkx„C, ψ (ƒkx„C) = ky.4

(23) Mapping equivalence classes onto their members 

 a. ψ applied to 〈K/C1, ≤C1〉: 

  ψ({c3}) = c3 

  ψ({c1, c4}) = c1 and c4 

  ψ({c2, c5}) = c2 and c5

b. ψ applied to 〈K/C2, ≤C2〉: 

  ψ({c5}) = c5 

  ψ({c2, c3}) = c2 and c3 

  ψ({c1, c4}) = c1 and c4

c. ψ applied to 〈K/C3, ≤C3〉: 

  ψ({c2}) = c2 

  ψ({c1, c4}) = c1 and c4 

  ψ({c3, c5}) = c3 and c5

We can show that the mapping ψ is an order-embedding mapping. This is stated 

as a theorem in (24). 

                                                 
4  Note that ψ is not necessarily a function. ψ maps an equivalence class onto each of its members, and 

since an equivalence class can have more than one member, ψ can be a multi-valued mapping. 
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(24) Theorem 3: That ψ is an order-embedding 

 The mapping ψ as defined in Def. 9 (22) is an order-embedding. 

 Proof of Theorem 3: We need to show that ƒk1„C ≤C ƒk2„C if and only if ψ(ƒk1„C) ≤C' 

ψ(ƒk2„C). First consider the if part – i.e. I will first show that ψ(ƒk1„C) ≤C' ψ(ƒk2„C) implies 

ƒk1„C ≤C ƒk2„C. Both ψ(ƒk1„C) and ψ(ƒk2„C) are members of the set 〈K, ≤C'〉 – since ψ is 

defined as mapping into this set (Def. 9 (22)). If ψ(ƒk1„C) ≤C' ψ(ƒk2„C), then by the 

definition of ≤C' (Def. 7 (19)) it follows that C(ψ(ƒk1„C) ≤ C(ψ(ƒk2„C). But then by 

definition of the ordering ≤C (Def. 6 (17)), it follows directly that ƒk1„C ≤C ƒk2„C. 

 Now consider the only part – i.e. I will now show that ƒk1„C ≤C ƒk2„C only if 

ψ(ƒk1„C) ≤C' ψ(ƒk2„C). To show this, assume the opposite – i.e. assume that ƒk1„C ≤C ƒk2„C 

but that ψ(ƒk1„C) >C' ψ(ƒk2„C). 5  Again, we know that both ψ(ƒk1„C) and ψ(ƒk2„C) are 

members of the set 〈K, ≤C'〉 – since ψ is defined as mapping into this set (Def. 9 (22)). 

Based on the definition of ≤C' (Def. 7 (19)) we therefore know that if ψ(ƒk1„C) >C' ψ(ƒk2„C), 

then C(ψ(ƒk1„C) > C(ψ(ƒk2„C). But based on the definition of ≤C (Def. 6 (17)), C(ψ(ƒk1„C) > 

C(ψ(ƒk2„C) implies ƒk1„C >C ƒk2„C. And this contradicts the assumption that we started with, 

i.e. that ƒk1„C ≤C ƒk2„C. So, this means that ƒk1„C ≤C ƒk2„C only if ψ(ƒk1„C) ≤C' ψ(ƒk2„C). 

           � 

 This property of ψ is clear in the examples in (23). Consider C1 as an example. 

We know from (18) that {c3} ≤C1 {c1, c4}, and from (20) we know that c3 ≤C'1 c1, c3 ≤C'1 c4, 

                                                 
5  If ¬(ψ(ƒk1„C) ≤C' ψ(ƒk2„C) there are two possibilities to consider. It is possible that ψ(ƒk1„C) >C' ψ(ƒk2„C) 

but it is also possible that ψ(ƒk1„C) and ψ(ƒk2„C) not comparable in terms of the relation ≤C'. Because of 
the fact that constraints are functions, all candidates are comparable in terms of all constraints so that 
¬(ψ(ƒk1„C) ≤C' ψ(ƒk2„C) necessarily implies ψ(ƒk1„C) >C' ψ(ƒk2„C). 
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and c1 ≤C'1 c4. In (23) we see that ψ({c3}) = c3 and ψ({c1, c4}) = c1 and c4. Therefore, we 

have {c3} ≤C1 {c1, c4} and ψ({c3}) ≤C'1 ψ({c1, c4}). It can easily be checked that this true 

for all candidates and all three constraints. 

 What we have shown is that there exists an order-embedding mapping from  

〈K/C, ≤C〉 to 〈K, ≤C'〉. It is therefore a straightforward matter to move from the ordered set 

of equivalence classes 〈K/C, ≤C〉 to the ordered set of candidates 〈K, ≤C'〉. Consequently, it 

does not matter in principle whether we think of the ordering that EVAL imposes on the 

candidate set in terms of individual candidates (≤C') or in terms of equivalence classes of 

candidates (≤C) – the one can always be recovered from the other. In the rest of this 

chapter I will deal with the ordering only in terms of equivalence classes (≤C). The reason 

for this is that the ordering in terms of equivalence classes (≤C) is considerably simpler 

than the ordering in terms of individual candidates (≤C'). For one thing, the set K/C 

contains potentially fewer candidates than the set K – since every member of K/C can 

contain several members of K. There are therefore fewer ordering relations to consider in 

the set 〈K/C, ≤C〉 than in the set 〈K, ≤C'〉.6  

This issue of the relationship between equivalence classes and individual 

candidates will also crop in a different guise towards the end of this chapter where I 

discuss the concept of “grammatical distinctness”. Two candidates that belong to the 

                                                 
6  There are more reasons. Strictly speaking ≤C' is not even an order, but only a “pre-order” or a “quasi-

order” – i.e. it is a transitive and reflexive but not antisymmetric relation (Partee et al., 1993:207-208). 
Because of this many of the properties that we know to hold of orders in general do not necessarily 
hold of ≤C'. Working with ≤C, which is an order, is therefore more convenient – it allows us to use all 
of the standard concepts and theorems that apply to orders. 
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same equivalence class in terms of constraint C are “grammatically indistinct” in terms C 

(see §3.2.5 for more on this). 

2.2.2 ≤C defines a chain 

In this section I will show that the ordering that ≤C imposes on K/C is a chain ordering. 

Not all orderings are chain orderings. For an order to qualify as a chain ordering, it is 

necessary that any two elements be comparable. It is easiest to show the difference 

graphically. In (25) I show a graphic representation of three orderings on the set A = {a, b, 

c, d} of which only the first is a chain. 

(25) Chains and non-chains 

 A chain ordering  Non-chain I  Non-chain II 

    a               a     a 

 

    b    b           c                b 

  

    c    d       c             d 

 

   d 

  The second ordering in (25) is not a chain, because b and c are not comparable in 

this ordering, and neither is c and d. Similarly, the third ordering is not a chain since not 

all elements are comparable – here c and d are not comparable.  

In (26) I formally define a chain (Davey and Priestley, 1990:3), and in (27) then 

state explicitly that ≤C defines a chain on K/C.  

(26) Def. 10: Definition of a chain 

 Let P be an ordered set. Then P is a chain iff for all x, y ∈ P, either x ≤ y or y ≤ x. 
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(27) Theorem 4: That ≤C defines a chain 

 The ordering that ≤C imposes on K/C is a chain. 

Proof of Theorem 4: Consider ƒk1„C, ƒk2„C ∈ K/C, with ƒk1„C and ƒk2„C not 

necessarily distinct. By trichotomy of ≤ on ù (Enderton, 1977:62-63), it follows that  one 

of the following is true: C(k1) < C(k2), C(k1) > C(k2), or C(k1) = C(k2). By the definition of 

≤C (Def. 6 (17)), it then follows directly that either ƒk1„C >C ƒk2„C, ƒk1„C <C ƒk2„C or ƒk1„C =C 

ƒk2„C.         � 

Looking back at the orderings in (18) that is associated with each of the three 

constraints in our example, it is clear that these three orderings are indeed chains. In each 

quotient set K/Ci all equivalence classes are comparable by the relation ≤Ci.

What implications does this have for an OT grammar? It follows from this that 

there is no indeterminacy in the order that ≤C imposes on K/C. It is always possible to 

determine for any two equivalence classes in K/C how they are related with regard to 

each other in terms of ≤C. And because of the natural relationship between 〈K/C, ≤C〉 and 

〈K, ≤C'〉 (see §2.2.1 just above), it is also possible to determine for any two candidates 

how they are related to each other in terms of ≤C'. For any constraint C and any two 

candidates k1 and k2, we can therefore determine from the set 〈K/C, ≤C〉 whether C(k1) < 

C(k2), C(k1) > C(k2) or C(k1) = C(k2).7 This point will be discussed again when I consider 

the ordering imposed on the candidate set with respect to the full grammar (§3.2.2). 

                                                 
7  In this sense the classic OT model, and specifically the model developed here, is different from OT 

with targeted constraints (Bakovic and Wilson, 2000, Wilson, 1999). A targeted constraint takes only a 
subset of the candidate set as domain. For a targeted constraint, EVAL can therefore impose an 
ordering only on those candidates in the domain of the constraint. Candidates not in the domain of a 
targeted constraint cannot be related to other candidates in terms of the ordering that EVAL imposes 
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2.2.3 The chain defined by ≤C always has a minimum 

In this section I will show that the chain ordering that ≤C defines on the set K/C is 

guaranteed to have a minimum. The minimum will be that equivalence class that contains 

the candidates that receive the smallest number of violations in terms of C. The definition 

in (28) is from Davey and Priestley (1990:15). 

(28) Def. 11: Minimum of an ordered set 

 Let P be an ordered set and Q ⊆ P. Then: 

 a ∈ Q is the minimum of Q iff a ≤ x for every x ∈ Q. 

(29) Theorem 5: That 〈K/C, ≤C〉 has a minimum 

 The ordering ≤C always has a minimum in K/C. 

 Proof of Theorem 5:8 This proof makes use of the notion of the well-ordering of 

ù under ≤ (Enderton, 1977:86). We say that ù is well-ordered under ≤, because every 

non-empty subset of ù is guaranteed to have a minimum under ≤.9

 Constraints are functions with their ranges included in ù – that is for all 

candidates k and all constraints C, C(k) ∈ ù. By the well-ordering of ù under ≤, it 

follows that there will be some candidate k such that C will map k onto a smaller number 

than all other candidates, i.e. there will be some k such that C(k) ≤ C(k’) for all k’ ∈ K. In 

                                                                                                                                                 
on the candidate set. The orderings associated with targeted constraints are therefore not chain 
orderings. 

8  A minimum is defined on a subset Q of the ordered set P. In the case under consideration here, the 
subset is equal to the superset – that is, K/C stands for both P and Q from the definition (which is 
possible since K/C ⊆ K/C). The proof therefore does not refer to the subset~superset relation. 

9  This is obviously true – in any set of natural numbers there will always be a smallest number. It can 
also be proved formally. See Enderton (1977:86-87) for a proof. 
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terms of the ordering ≤C (Def. 6 (17)) the equivalence class of k, ƒk„C (Def. 4 (13)), will 

then precede all other equivalence classes in the quotient set K/C (Def. 5 (15)), i.e. ƒk„C ≤C 

ƒk’„C for all ƒk’„C ∈ K/C. And therefore ƒk„C is then the minimum in K/C.        � 

The orderings in (18) that are associated with each of the three constraints in our 

example clearly all have a minimum – in each of the orderings it is the equivalence class 

that appears highest on the graphic representations of the orderings. In this example this 

is every time the equivalence class containing the candidates that receive zero violations 

in terms of the specific constraint. 

 The converse of Theorem 5 is of course not necessarily true. Since there are 

constraints that can in principle assign an unbounded number of violations,10 it is possible 

that the chain imposed by ≤C on K/C can be without a maximum. If this chain had no 

maximum and no minimum, then there would have been no uniquely identifiable point on 

the chain – for any member of the chain there would be infinitely many members above it 

and also infinitely members below it. The output of an OT grammar would not have been 

very informative had it been such an infinitely ascending and infinitely descending chain. 

We would never be able to refer uniquely to a specific level in the chain, and it would 

therefore not be possible to define access to the chain, i.e. access to the candidate set. I 

will return to this point again in §3.2.3 where I deal with the ordering imposed on the 

candidate set with reference to the full constraint set. 

                                                 
10  There is nothing that limits the number of epenthetic segments in principle, so that DEP can assign an 

unbounded number of violations. There are also many markedness constraints that are not in principled 
limited in how many violations they can assign. Those markedness constraints that penalize a 
candidate for each instantiation of some marked structure (ONSET, NOCODA, *[+voice, +obstruent], 
etc.)  can assign unboundedly many violations in principle – since unboundedly many violating 
structures can be inserted. 
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2.3.4 The set K/C is a partition on K 

In this section I will show that the set K/C is a partition on K. What this means is that 

every member of K (every candidate) is included in one and exactly one of the 

equivalence classes contained in K/C. This is an important result for two reasons: First, 

since every candidate is included in some equivalence class, it means that the ordering ≤C 

does indeed give us information about every candidate. Secondly, every candidate is 

included in only one equivalence class, and every equivalence class can occupy only one 

position in the ordering that ≤C imposes on K/C. Because of the natural relationship 

between 〈K/C, ≤C〉 and 〈K, ≤C'〉 (see §2.2.1), this implies that every candidate is also 

guaranteed to occupy a unique slot in the ranking that EVAL imposes on the candidate 

set. The fact that K/C is a partition on K therefore assures that we can determine for every 

candidate what its unique relationship is to every other candidate in terms of the 

constraint C. 

The definition of a partition in (30) is based on Enderton (1977:57) and Partee et 

al. (1993:46). 

(30) Def. 12: A partition 

 A set P is said to be a partition on some set A iff: 

(a) P consists of non-empty subsets of A. 

 (b) The sets in P are exhaustive – each element of A is in some set in P. 

(c) The sets in P are disjoint – no two different sets in P have any element in 

common. 
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(31) Theorem 6: K/C as a partition on K 

  K/C is a partition on K. 

 Proof of Theorem 6:  Consider first (a), the requirement that the sets in K/C be 

non-empty. K/C is the quotient set on K modulo ≈C (Def. 5 (15)). Every member of K/C 

is therefore an equivalence class on K under the equivalence relation ≈C (Def. 4 (13)). 

Equivalence relations are reflexive (Def. 3 (11)), and therefore an equivalence class can 

never be empty. For any member ƒk„C of K/C it then follows that ƒk„C has at least one 

member, namely k (since k ≈C k). 

 Now consider requirement (b), that the equivalence classes be exhaustive. Since 

constraints are functions with K as their domain ((3) and Theorem 1 (5)), it follows that 

C(k) is defined for every k ∈ K. Then we have for every k ∈ K, C(k) = C(k), and therefore 

k ≈C k (Def. 2 (9)). And finally we have for every k ∈ K, k ∈ ƒk„C ∈ K/C (Def. 4 (13) and 

Def. 5 (15)). 

 Now consider requirement (c), that the equivalence classes be disjoint. Let k1, k2, 

k3 ∈ K and let ƒk2„C, ƒk3„C be equivalence classes associated with k2 and k3 respectively, as 

defined in Def. 4 (13). Now let k1∈ ƒk2„C and k1∈ ƒk3„C. We need to show that ƒk2„C = 

ƒk3„C. 

 Since k1∈ ƒk2„C and k1∈ ƒk3„C, we know that k2 ≈C k1 and k3 ≈C k1 (Def. 4 (13)). 

But ≈C is an equivalence relation (Theorem 2 (12)), and therefore ≈C is symmetric (Def. 3 

(11)). Then we have k1 ≈C k3, because of k3 ≈C k1. But as an equivalence relation ≈C is 

also transitive (Def. 3 (11)). And therefore k2 ≈C k1 and k1 ≈C k3 implies k2 ≈C k3. But again 
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since ≈C is transitive, it follows from k2 ≈C k3 that for all k such that k3 ≈C k, also k2 ≈C k. 

And therefore for all k, if k ∈ ƒk3„C, then k ∈ ƒk2„C (Def. 4 (13)). By similar reasoning we 

can show the converse, that for all k, if k ∈ ƒk2„C, then k ∈ ƒk3„C. Therefore we have ƒk2„C 

= ƒk3„C.                        � 

 In (16) the quotient sets associated with each of the constraints used in our 

examples were listed. Inspection of these equivalence classes will show that each of them 

are indeed partitions on K – every candidate is included in one and only one equivalence 

class in every quotient set. 

We therefore now know that every candidate is included in exactly one of the 

equivalence classes that make up K/C. Together with the fact that ≤C defines a chain 

ordering on K/C and with the fact that there is a natural relationship between 〈K/C, ≤C〉 

and 〈K, ≤C'〉 (see §2.2.1), this implies that every candidate has one unique spot in the 

ordering that EVAL imposes on the candidate set. From the information in the ordered 

set 〈K/C, ≤C〉 we can determine for any two distinct candidates k1 and k2 how they are 

related to each other in terms of constraint C – i.e. whether they fare equally well on C 

(C(k1) = C(k2)), or whether one does better on C (C(k1) < C(k2) or (C(k1) > C(k2)). There 

is no indeterminacy in the output of an OT grammar. I will return to this point again in 

§3.2.4 where the ordering imposed on the candidate set with reference to the full 

constraint set is discussed. 
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3. EVAL and the ordering associated with the full constraint set 

Up to this point I have considered only how EVAL orders the candidate set with respect 

to individual constraints. Once EVAL has done this for every constraint in CON, we end 

up with as many orderings on the candidate set as there are constraints in CON. But the 

final output of the grammar is a single ordering on the candidate set. We therefore need a 

way in which these different orderings can be combined into one single ordering that 

corresponds to the whole grammar. This section of the chapter deals with how EVAL 

combines the orderings associated with different constraints. 

 To make the problem that needs to be addressed more concrete I will continue 

using the same example as earlier. I repeat the tableau from (6) in (32). 

(32) {c1, c2, c3, c4, c5} evaluated by ||C1 o C2 o C3|| 

  C1 C2 C3

 c1 * **  

 c2 ** * * 

 c3  * ** 

 c4 * **  

 c5 **  ** 

In this grammar, c3 is clearly the best candidate. If we remove c3 from the 

candidate set, and consider only the four remaining candidates, then c1 and c4 tie as the 

best. If we also remove these candidates and consider only the two remaining candidates 

{c2, c5}, then c5 is the best. In this grammar the candidates are therefore related as follows 

in terms of their harmony: |c3 ™ {c1, c4} ™ c5 ™ c2|. The ordering that EVAL imposes on 

the candidate set in terms of each individual constraint, and in terms of the grammar as a 

 59



whole can then be represented graphically as in (33). The orderings relative to the 

individual constraints are, of course, identical to the orderings shown above in (18).  

(33) Orderings on the candidate set relative to C1, C2, C3, and ||C1 o C2 o C3|| 

                 C1       C2        C3          ||C1 o C2 o C3|| 

   {c3}      {c5}  {c1, c4}     {c3}

{c1, c4} {c2, c3}    {c2}   {c1, c4} 

{c2, c5} {c1, c4} {c3, c5}     {c5} 

           {c2} 

This makes it clear what we need: a way in which to combine the orderings 

associated with each of C1, C2 and C3 such that the ordering that results is the ordering 

associated with ||C1 o C2 o C3||. Section §3.1 is dedicated to showing how this goal can be 

achieved. This combination process is defined in two stages. First, the Cartesian product 

is taken between the quotient sets associated with individual constraints (§3.1.1), and the 

set that results from this process is ordered lexicographically (§3.1.2). Then this new set 

and ordering is simplified by applying set intersection to each member of this new set 

(§3.1.3).  The simplified set and ordering is the final output of the grammar, the final 

ordering that EVAL imposes on the candidate set for the grammar as a whole. Section 

§3.2 considers some of the properties of this set and ordering. 

3.1 Combining the ordered sets associated with individual constraints 

3.1.1 Taking the Cartesian product 

We need a way in which to combine the ordered sets associated with each of the 

constraints. There are several different ways in which ordered sets can be joined – see 

Davey and Priestly (1990:17-19) for a discussion of the most important ways in which 
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this can be done. One way in which ordered sets can be combined is by taking the 

Cartesian product between them. When we take the Cartesian product between two sets a 

new set results that contains ordered pairs 〈x1, x2〉 with x1 coming from the first set and x2 

from the second set. The desirable property of this procedure is that a precedence 

relationship is established between the information coming from the two sets – the 

elements from the first set precede the elements from the second set in the ordered pairs 

〈x1, x2〉. In an OT grammar constraints are ranked and higher ranked constraints take 

precedence over lower ranked constraints. We have to take this fact in consideration 

when we combine the orderings associated with individual constraints into one 

conglomerate ordering for the grammar as a whole. The Cartesian product operation 

allows us to do exactly this – we take the Cartesian product of the ordered sets associated 

with each constraint in the order in which the constraints are ranked. This section 

explains how this can be achieved formally. 

We usually think of the Cartesian product as the product between two sets. 

However, there is nothing that prohibits us from taking the Cartesian product of more 

than two sets. The Cartesian product of two sets is a set of ordered pairs 〈x1, x2〉 with x1 

coming from the first set and x2 from the second set. When we take the Cartesian between 

n sets, the result is a set of n-tuples 〈x1, x2, … xn〉 with xi coming from the ith set. The 

definition of the Cartesian product in (34) is based on Enderton (1977:54). Simply 

restating this definition in terms of quotient sets associated with constraints, gives us the 

first step in the combination process. This is done in (35). 
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(34) Def. 13: Cartesian product 

Let I be the set {1, 2, … , n}, the index set, and let H be a function with domain I. 

Then, for each i ∈ I, we have a set H(i). The Cartesian product of H(i) for all i ∈ I 

is defined as follows: 

Vi∈I H(i) := {f | f is a function with domain I and ∀i (i ∈ I →  f(i) ∈ H(i))}11

(35) Def. 14: Step 1 in combination process = Cartesian product between sets K/Ci

Let I be the set {1, 2, … , n}, the index set, such that ||C1 o C2 o … o Cn||.  

Let K/Ci be the quotient on K associated with Ci. We want the Cartesian product 

of all the quotient sets. We define this as follows: 

Vi∈I K/Ci := {f | f is a function with domain I and ∀i (i ∈ I → f(i) ∈ K/Ci)} 

The set Vi∈I K/Ci will be referred to as K/C×. 

 To see what the result of this process is, consider again the example from (6) and 

(32) above. In (16) the quotient sets associated with each of the three constraints were 

listed. In (36) I show the result of taking the Cartesian product between these three sets in 

the order K/C1 × K/C2 × K/C3. 

                                                 
11  Each f ∈ Vi∈I H(i) is of the following form: f = {〈1, x1〉, 〈2, x2〉 … 〈n, xn〉} with xi ∈ H(i).  The set that 

we actually want is a set whose members are ordered n-tuples, i.e. of the form 〈x1, x2 … xn〉 with xi ∈ 
H(i). However, it is a straightforward matter to uniquely match up every set {〈1, x1〉, 〈2, x2〉 … 〈n, xn〉} 
with that n-tuple 〈x1, x2 … xn〉 to which it corresponds. The n-tuple that corresponds to the set {〈1, x1〉, 
〈2, x2〉 … 〈n, xn〉} is namely that n-tuple in which  xi < xj iff 〈i, xi〉, 〈j, xj〉 ∈ {〈1, x1〉, 〈2, x2〉 … 〈n, xn〉}, 
and i < j. Since this uniquely matches up the sets {〈1, x1〉, 〈2, x2〉 … 〈n, xn〉} with their corresponding n-
tuples 〈x1, x2 … xn〉, we can without loss of exactness use the set notation and the n-tuple notation 
interchangeably. 
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(36) Taking the Cartesian product of K/C1, K/C2 and K/C3 from (17) 

 K/C1 = {{c3}, {c1, c4}, {c2, c5}} 

 K/C2 = {{c5}, {c2, c3}, {c1, c4}} 

 K/C3 = {{c1, c4}, {c2}, {c3, c5}} 

 K/C× =  

 { 〈{c3}, {c5}, {c1,c4}〉, 〈{c3}, {c5}, {c2}〉, 〈{c3}, {c5}, {c3,c5}〉, 

  〈{c3}, {c2,c3}, {c1,c4}〉, 〈{c3}, {c2,c3}, {c2}〉, 〈{c3}, {c2,c3}, {c3,c5}〉, 

  〈{c3}, {c1,c4}, {c1,c4}〉, 〈{c3}, {c1,c4}, {c2}〉, 〈{c3}, {c1,c4}, {c3,c5}〉, 

  〈{c1,c4}, {c5}, {c1,c4}〉, 〈{c1,c4}, {c5}, {c2}〉, 〈{c1,c4}, {c5}, {c3,c5}〉, 

  〈{c1,c4}, {c2,c3}, {c1,c4}〉, 〈{c1,c4}, {c2,c3}, {c2}〉, 〈{c1,c4}, {c2,c3}, {c3,c5}〉, 

  〈{c1,c4}, {c1,c4}, {c1,c4}〉, 〈{c1,c4}, {c1,c4}, {c2}〉, 〈{c1,c4}, {c1,c4}, {c3,c5}〉, 

  〈{c2,c5}, {c5}, {c1,c4}〉, 〈{c2,c5}, {c5}, {c2}〉, 〈{c2,c5}, {c5}, {c3,c5}〉, 

  〈{c2,c5}, {c2,c3}, {c1,c4}〉, 〈{c2,c5}, {c2,c3}, {c2}〉, 〈{c2,c5}, {c2,c3}, {c3,c5}〉, 

  〈{c2,c5}, {c1,c4}, {c1,c4}〉, 〈{c2,c5}, {c1,c4}, {c2}〉, 〈{c2,c5}, {c1,c4}, {c3,c5}〉 }

3.1.2 Imposing the lexicographic order on K/C×

At this point we have a set K/C×, but this is still an unordered set. In this section I will 

show how we can defined an ordering on this set. The lexicographic order is an ordering 

relationship on the product of n ordered sets that gives primacy to the order of the (i-1)th 

set over that of the ith set. This is desirable in OT – since the order imposed by the higher 

ranked constraints should be more important in the combined ordering.12 The definition 

of the lexicographic ordering in (37) is based on Davey and Priestley (1990:19). However, 

they define the order only on a binary Cartesian product, while the definition in  

(37) is extended to cover arbitrary Cartesian products. In (38) I restate this definition in 

                                                 
12  This follows from the strictness of strictness domination principle of OT (McCarthy, 2002b:4, Prince 

and Smolensky, 1993:78, 1997:1604). For more on this, see §3.2.1 below. 
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terms of the Cartesian product between the quotient sets associated with constraints – see 

(35) above. 

(37) Def. 15: Lexicographic order 

Let Vi∈I H(i) be the set as defined in Def. 13 (34) above, and let 〈x1, x2, … ,  xn〉, 

〈y1, y2, … ,  yn〉 ∈ Vi∈I H(i). 

The lexicographic order on Vi∈I H(i) is defined as follows: 

〈x1, x2, … ,  xn〉 ≤ 〈y1, y2, … ,  yn〉 iff: 

(i) For all i ≤ n, xi = yi     (then 〈x1, x2, … ,  xn〉 = 〈y1, y2, … ,  yn〉) 

    OR (ii)   ∃k such that: 

• ∀i (i  < k → xi = yi), and 

• xk < yk   (then 〈x1, x2, … ,  xn〉 < 〈y1, y2, … ,  yn〉) 

(38) Def. 16: Step 2 in the combination process = ordering K/C×  

Let Ci ∈ CON, with the ranking ||C1 o C2 o … o Cn||, and K/Ci the quotient set 

associated with constraint Ci (as defined in Def. 5 (15)). Let ƒxi„Ci, ƒyi„Ci ∈ K/Ci be 

the equivalence classes of candidates xi and yi in terms of constraint Ci (as defined 

in Def. 4 (13)). 

Let ≤Ci be the ordering that EVAL imposes on the candidate set in terms of 

constraint Ci (as defined in Def. 6 (17)).  

Let K/C× be the Cartesian product of K/Ci for all i ∈ I (as defined in Def. 14 (35)). 

Let 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉, 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉 ∈ K/C×.  

Then ≤×, the lexicographic order on K/C×, is defined as follows: 
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 ((38) continued) 

〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ≤× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉 iff: 

(i) ∀i(i ≤ n → ƒxi„Ci =Ci ƒyi„Ci) 

(then 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 =× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉) 

      OR (ii) ∃k such that:  

• ∀i (i  < k → ƒxi„Ci =Ci ƒyi„Ci), and 

• ƒxk„Ck <Ck  ƒyk„Ck. 

(then 〈ƒ

                                                

x1„C1, ƒx2„C2 … ƒxn„Cn〉 <× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉) 

In order to make the discussion more concrete, I show in (39) the result of 

imposing the lexicographic order as defined here in (38) on the set K/C× from (36). 

As is clear from (36) and (39), the set K/C× is a set of n-tuples of sets, while K/C1, 

K/C2 and K/C3 are sets of sets. An OT grammar ultimately makes claims about 

(equivalence classes of) candidates,13 and not about n-tuples of (equivalence classes of) 

candidates. It is therefore necessary to simplify the set K/C× such that it is also a set of 

sets. The next sub-section introduces a method for doing this. 

However, before we discuss this simplification process, I will first prove two 

lemmas about the ordering ≤× on the set K/C×. The ordering that EVAL imposes on the 

simplified set (discussed in the next section) is defined in terms of the ordering ≤×. 

Although the characteristics of the ordering ≤× are not themselves of direct relevance, 

these characteristics will become instrumental in the later discussion (§3.2.3 and §3.2.4).

 
13  See §2.1.1 for the relationship between individual candidates and the equivalence classes of candidates. 
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(39) Imposing the lexicographic order on K/C×

      〈K/C1, ≤C1〉 〈K/C2, ≤C2〉 〈K/C3, ≤C3〉         〈K/C×, ≤×〉 
   {c3}      {c5}  {c1, c4}   〈{c3}, {c5}, {c1,c4}〉

{c1, c4}  {c2, c3}       {c2}   〈{c3}, {c5}, {c2}〉 

{c2, c5}  {c1, c4}      {c3, c5}   〈{c3}, {c5}, {c3,c5}〉 

       〈{c3}, {c2,c3}, {c1,c4}〉 

       〈{c3}, {c2,c3}, {c2}〉 

       〈{c3}, {c2,c3}, {c3,c5}〉 

       〈{c3}, {c1,c4}, {c1,c4}〉 

       〈{c3}, {c1,c4}, {c2}〉 

       〈{c3}, {c1,c4}, {c3,c5}〉 

       〈{c1,c4}, {c5}, {c1,c4}〉 

       〈{c1,c4}, {c5}, {c2}〉 

       〈{c1,c4}, {c5}, {c3,c5}〉 

       〈{c1,c4}, {c2,c3}, {c1,c4}〉 

       〈{c1,c4}, {c2,c3}, {c2}〉 

       〈{c1,c4}, {c2,c3}, {c3,c5}〉 

       〈{c1,c4}, {c1,c4}, {c1,c4}〉 

       〈{c1,c4}, {c1,c4}, {c2}〉 

       〈{c1,c4}, {c1,c4}, {c3,c5}〉 

       〈{c2,c5}, {c5}, {c1,c4}〉 

       〈{c2,c5}, {c5}, {c2}〉 

       〈{c2,c5}, {c5}, {c3,c5}〉 

       〈{c2,c5}, {c2,c3}, {c1,c4}〉 

       〈{c2,c5}, {c2,c3}, {c2}〉 

       〈{c2,c5}, {c2,c3}, {c3,c5}〉 

       〈{c2,c5}, {c1,c4}, {c1,c4}〉 

       〈{c2,c5}, {c1,c4}, {c2}〉 

       〈{c2,c5}, {c1,c4}, {c3,c5}〉 

(40) Lemma 1: That ≤× defines a chain 

 ≤× defines a chain on K/C×.14

                                                 
14  For a definition of a chain refer to Def. 10 (26) above. 
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Proof of Lemma 1: Let  〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉, 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉 ∈ K/C×, 

K/Ci the quotient set associated with constraint Ci (Def. 5 (15)), and ≤Ci the ordering on 

this quotient set (Def. 6 (17)).  Then we have ƒxi„Ci, ƒyi„Ci ∈ K/Ci for all i ≤ n (Def. 14 

(35)). But since ≤Ci defines a chain ordering on K/Ci (Theorem 4 (27)), we have that ƒxi„Ci 

=Ci ƒyi„Ci or ƒxi„Ci >Ci ƒyi„Ci or ƒxi„Ci <Ci ƒyi„Ci for all i ≤ n. The ordering ≤× is defined in 

terms of the orderings ≤Ci, so that it follows immediately that any two elements in K/C× 

are comparable, and therefore that ≤× orders K/C× in a chain.   � 

(41) Lemma 2: That ≤× always has a minimum 

The ordering ≤× always has a minimum in K/C×.15

Proof of Lemma 2: There are two possible scenarios: (i) Either all candidates 

receive exactly the same number of violations in terms of all constraints, or (ii) there are 

at least two candidates that differ on at least one constraint. I will consider these two 

scenarios in turn below. 

Scenario 1: All candidates receive exactly the same number of violations in terms 

of every constraint. If all candidates receive the same number of violations in terms some 

constraint C, then we have ki ≈C kj for all ki, kj ∈ K (Def. 2 (9)). Then we have that all 

candidates will belong to the same equivalence class in terms of constraint C, i.e. for all ki, 

kj ∈ K we have ki, kj ∈ ƒki„C (Def. 4 (13)). The quotient set on K associated with C, K/C 

(Def. 5 (15)), will then contain the set ƒki„C. But since K/C is a partition on K (Theorem 6 

(31)), its members exhaust all the candidates in k and are disjoint (Def. 12 (30)). 

Therefore, K/C contains only one member, namely ƒki„C. 

                                                 
15  For a definition of a minimum see Def. 11 (28) above. 
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Since all candidates receive the same number of violations in terms of all 

constraints, it follows that the quotient set associated with each constraint will have only 

one member, i.e. if there are n constraints, then for all i ≤ n, K/Ci will contain only one 

member. If we take the Cartesian product of any number of sets each with only one 

member, the result will also be a set with only one member (Def. 13 (34)). The set K/C× 

will therefore also contain only member. And then ≤× defines a one-level chain, so that 

the single level on this chain is obviously the minimum of the chain. 

Scenario 2: There are at least two candidates that differ on at least one constraint. 

I will assume that ≤× does not have a minimum in K/C×, and then show that it leads to a 

contradiction.  

Assume that ≤× has no minimum in K/C×. Since ≤× is a chain (Lemma 1 (40)), it 

then follows that ≤× is an infinitely descending chain. 

Let ||C1 o C2 o … o Cn|| be the grammar under consideration. Then there must be 

a highest ranked constraint that does not rate all candidates equally (since under 

assumption there are at least two candidates that differ on at least one constraint). Call 

this constraint Ci. Then ≤Ci is the ordering associated with Ci as defined in Def. 6 (17), 

and K/Ci the quotient set associated with Ci as defined in Def. 5 (15). By assumption 

there are at least two candidates, k1 and k2, that are rated differently by Ci, i.e. Ci(k1) ≠ 

Ci(k2). From this it follows that ≤Ci establishes at least a two-level ordering on K/Ci.  

≤Ci defines a chain (Theorem 4 (27)) with a minimum on K/Ci (Theorem 5 (29)). So, 

there must be some member ƒxj„Ci of K/Ci such that ƒxj„Ci <Ci ƒk„Ci for all ƒk„Ci ∈ K/Ci and 

ƒk„Ci ≠ ƒxj„Ci (i.e. ƒxj„Ci is the minimum of ≥Ci in K/Ci). 
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All members of K/C× are n-tuples of the form 〈ƒx„C1, ƒy„C2 … ƒz„Cn〉 with x, y, z ∈ 

K (Def. 14 (35)). Remember that Ci is the highest ranked constraint in terms of which any 

two candidates differ, and K/Ci is the quotient set associated with this constraint. Each n-

tuple in K/C× will have as its ith member a member from K/Ci. Also recall that ƒxj„Ci is the 

minimum of ≤Ci in K/Ci. Those n-tuples in K/C× that have ƒxj„Ci as their ith member, will 

therefore be ordered before all n-tuples in K/C× that have some other member of K/Ci as 

ith member in terms of the ordering ≤× (Def. 16 (38)).  

But by assumption ≤× is an infinitely ascending chain. There must therefore be 

some n-tuple in K/C× that is ordered before those n-tuples with ƒxj„Ci as their ith member. 

But this is not possible, since n-tuples with ƒxj„Ci as their ith member have just been 

shown to be ordered before all other n-tuples in K/C×. 

Therefore, also in the second scenario ≤× is guaranteed to have a minimum in 

K/C×.           � 

 Now that these two lemmas have been proved, we can return to the main 

discussion. The next section shows how the set K/C× and the ordering ≤× can be 

simplified. 

3.1.3 Simplifying the set K/C× and the ordering ≤×

The ordering that EVAL will impose on the candidate set in our example is represented 

in (33). This ordering contains four members only, and each of its members is simply a 

set of candidates. This ordered set represents the final output of the grammar in our 

example. The ordered set 〈K/C×, ≤×〉 represented in (39) above is very different. It has 27 
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members, and its members are not simply sets of candidates, but ordered n-tuples of sets 

of candidates. We need to find a way to transform the set 〈K/C×, ≤×〉 into the set 

represented in (33).  This section discusses the way in which we can simplify the set K/C× 

and the ordering ≤× into the set represented in (33). This transformation is defined in two 

steps. 

I will first show how the set K/C×, a set of ordered n-tuples of sets, can be 

transformed into a set of sets. There is a straightforward way to create a set of sets of 

candidates by simplifying K/C× – map each n-tuple from K/C× onto the intersection 

between the members of the n-tuple. One limitation that needs to be placed on this 

mapping, is that it must not be able to map any element from K/C× onto ∅. This mapping 

must therefore be undefined for elements of K/C× where the intersection of the members 

of the n-tuple is ∅.16 I will first define and illustrate this mapping. Later in §3.2 I will 

show that this mapping has the desired properties – i.e. that applying this mapping to 

K/C× in (39) will indeed result in set represented in (33). 

(42) Def. 17:    First half of step 3 in the combination process = Intersect 

Let K/C× be the set as defined in Def. 14 (35) above, and let 〈ƒ

                                                

x1„C1, ƒx2„C2 … 

ƒxn„Cn〉 ∈ K/C×. Then we define Intersect: K/C×   →  ℘(K) as follows: 

Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) is undefined if ƒx1„C1∩ƒx2„C2∩…∩ ƒxn„Cn = ∅, 

and 

Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) = ƒx1„C1∩ƒx2„C2∩…∩ ƒxn„Cn otherwise. 

 
16  The reason for this is that we want the new set of sets that results from this simplification to be a 

partition on the candidate set K, and the empty set cannot be a member of any partition – see Def. 12 
(30). As for why the new set should be a partition on K, see §3.2.4 below. 
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Based on this mapping it is possible to define a new set that contains all of those 

sets onto which Intersect does indeed map some element of K/C×. 

(43) Def. 18: Collecting the output of Intersect into one set 

 K/CCom:= {Z || ∃〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C×, such that  

Z = Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) } 

 To see how this operation works, consider what it does to the set K/C× from (36) 

and (39) above.  

(44) Intersect applied to  K/C×

Intersect(〈{c3}, {c5}, {c1,c4}〉)   is undefined 

Intersect(〈{c3}, {c5}, {c2}〉)    is undefined 

Intersect(〈{c3}, {c5}, {c3,c5}〉)   is undefined 

Intersect(〈{c3}, {c2,c3}, {c1,c4}〉)   is undefined 

Intersect(〈{c3}, {c2,c3}, {c2}〉)   is undefined 

Intersect(〈{c3}, {c2,c3}, {c3,c5}〉)   = {c3} 

Intersect(〈{c3}, {c1,c4}, {c1,c4}〉)   is undefined 

Intersect(〈{c3}, {c1,c4}, {c2}〉)   is undefined 

Intersect(〈{c3}, {c1,c4}, {c3,c5}〉)   is undefined 

Intersect(〈{c1,c4}, {c5}, {c1,c4}〉)   is undefined 

Intersect(〈{c1,c4}, {c5}, {c2}〉)   is undefined 

Intersect(〈{c1,c4}, {c5}, {c3,c5}〉)   is undefined 

Intersect(〈{c1,c4}, {c2,c3}, {c1,c4}〉)   is undefined 

Intersect(〈{c1,c4}, {c2,c3}, {c2}〉)   is undefined 

Intersect(〈{c1,c4}, {c2,c3}, {c3,c5}〉)   is undefined 

Intersect(〈{c1,c4}, {c1,c4}, {c1,c4}〉)   = {c1, c4} 

Intersect(〈{c1,c4}, {c1,c4}, {c2}〉)   is undefined 

Intersect(〈{c1,c4}, {c1,c4}, {c3,c5}〉)   is undefined 
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((44) continued) 

Intersect(〈{c2,c5}, {c5}, {c1,c4}〉)   is undefined 

Intersect(〈{c2,c5}, {c5}, {c2}〉)   is undefined 

Intersect(〈{c2,c5}, {c5}, {c3,c5}〉)   = {c5} 

Intersect(〈{c2,c5}, {c2,c3}, {c1,c4}〉)   is undefined 

Intersect(〈{c2,c5}, {c2,c3}, {c2}〉)   = {c2} 

Intersect(〈{c2,c5}, {c2,c3}, {c3,c5}〉)   is undefined 

Intersect(〈{c2,c5}, {c1,c4}, {c1,c4}〉)   is undefined 

Intersect(〈{c2,c5}, {c1,c4}, {c2}〉)   is undefined 

Intersect(〈{c2,c5}, {c1,c4}, {c3,c5}〉)   is undefined 

∴ K/CCom = {{c3}, {c1, c4}, {c5}, {c2}} 

The last thing that still needs to be done, is to define an ordering on this new set 

K/CCom. This needs to be done with reference to the ordering ≤× defined in Def. 16 (38) 

above. 

(45) Def. 19: Second half of Step 3 in the combination process:  
     the ordering ≤Com on K/CCom. 

Let (ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩  ƒxn„Cn), (ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩  ƒyn„Cn)  ∈  K/CCom. 

Then 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉, 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉  ∈  K/C×. 

Then we define the order ≤Com on K/CCom as follows:   

(ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩  ƒxn„Cn) ≤Com (ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩  ƒyn„Cn) iff  

〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉  ≤× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉. 

 In (46) I show what the new ordered set 〈K/CCom, ≤Com〉 looks like. Comparison 

with (33) will show that this is exactly the ordered set we were looking for. 
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(46) 〈K/CCom, ≤Com〉 

        {c3} 
            | 
         {c1, c4} 
            | 
         {c5} 
            | 
               {c2} 

  The set 〈K/CCom, ≤Com〉 is the final output of the grammar – this is rank-ordering 

that EVAL imposes on the candidate set. The properties of the set K/CCom and the 

ordering ≤Com are therefore important and I will discuss them in §3.2 below. However, 

before we can do that, it is first necessary to prove a lemma about the mapping Intersect.  

The lemma will show that the inverse of Intersect is an order preserving mapping from 

〈K/CCom, ≤Com〉 to 〈K/C×, ≤×〉. In and of itself this result is not of much interest. However, 

it will be used in §3.2 when the properties of 〈K/CCom, ≤Com〉 are discussed. Below I first 

give definitions for an inverse and an order preserving mapping, and then the lemma. 

(47) Def. 20: Inverse (Enderton, 1977:44) 

Let A and B be two sets, and R a relation on A × B.  R can then also be represented 

as set of ordered pairs, i.e. R = {〈a1, b1〉,  〈a2, b2〉, …} with ai ∈ A and bi ∈ B. 

R -1: B → A, the inverse of R, is then a relation on B × A, and is defined as follows: 

R -1 := {〈b, a〉 | 〈a, b〉 ∈ R } 

(48) Def. 21: The inverse of Intersect 

 Let K’ ⊆ K. Then we can define Intersect-1 as follows:  

Intersect-1 is a relation on ℘(K) × K/C× such that Intersect-1 (K’) = 〈ƒx1„C1, ƒx2„C2 

… ƒxn„Cn〉 iff Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) = K’. 
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(49) Def. 22: An order preserving mapping (Davey and Priestley, 1990:10)  

Let P and Q be ordered sets. A map ϕ: P → Q is said to order preserving if x ≤ y 

in P implies ϕ(x) ≤ ϕ(y) in Q. 

(50) Lemma 3: That Intersect-1 is order preserving 

 Intersect-1 is an order preserving mapping.  

Proof of Lemma 3: Let Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) = K’ and 

Intersect(〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉) = K’’. Then K’, K’’ ∈ K/CCom (Def. 18 (43)). For 

Intersect-1 to be order preserving, the following must therefore be true: If K’ ≤Com K’’ then 

Intersect-1 (K’) ≤× Intersect-1 (K’’). By substitution, this implies that for Intersect-1 to be 

order preserving, K’ ≤Com K’’ has to mean that also 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ≤× 〈ƒy1„C1, 

ƒy2„C2 … ƒyn„Cn〉. But this follows directly from the definition of ≤Com (Def. 19 (45)).              

           � 

 Consider again the example that we have been discussing all along. In (44) I 

showed the result of applying Intersect to the set K/C×. The set K/CCom collects the output 

of Intersect. Intersect-1 operates on K/CCom. This is shown in (51). 

(51) Applying Intersect-1 to K/CCom

K/CCom = {{c3}, {c1, c4}, {c5}, {c2}} 

Intersect-1({c3})  =  〈{c3}, {c2,c3}, {c3,c5}〉 

 Intersect-1({c1, c4})  = 〈{c1,c4}, {c1,c4}, {c1,c4}〉 

Intersect-1({c5})  = 〈{c2,c5}, {c5}, {c3,c5}〉 

Intersect-1({c2})  = 〈{c2,c5}, {c2,c3}, {c2}〉 
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 From this example it is clear that Intersect-1 in indeed order preserving. To see 

why, consider the first two mappings from (51). We know from (46) that {c3} ≤Com {c1, 

c4}. From (39) we know that 〈{c3}, {c2,c3}, {c3,c5}〉 ≤× 〈{c1,c4}, {c1,c4}, {c1,c4}〉, and 

therefore Intersect-1({c3}) ≤× Intersect-1({c1, c4}). Therefore we have {c3} ≤Com {c1, c4} 

and Intersect-1({c3}) ≤× Intersect-1({c1, c4}). It can easily be checked that the same is true 

for all other comparisons between the mappings in (51). Now that we have shown that 

Intersect-1 is an order preserving mapping, we can begin to consider the properties of the 

set 〈K/CCom, ≤Com〉. This is done in the next section.17

3.2 The properties of K/CCom and ≤Com

The ordered set 〈K/CCom, ≤Com〉 is the final output of the grammar – this is the ordering 

that EVAL imposes on the candidate set with respect to the full constraint ranking. The 

properties of this set are therefore important for our understanding of what an OT 

grammar is. This section is devoted to identifying those properties of this set that are 

most directly relevant to linguistic theory. First, it is necessary to confirm that this set 

does indeed agree with our intuitions about what the output of grammar looks like.18 In 

particular, we need to confirm that the ordering on this set obeys the “strictness of strict 

                                                 
17  The combination process of the orderings associated with individual constraints can be achieved in 

another way also. We can take the Cartesian product of the quotient sets associated with the two 
constraints that are ranked highest, i.e. K/C1 × K/C2. The lexicographic order can then be imposed on 
this new set. The new ordered set 〈K/C1 × K/C2, ≥×〉 can then be simplified according to the steps 
defined above – i.e. by applying Intersect to it, and by ordering the resulting set according to ≤Com.  
This simplified ordered set then has exactly the same form as the quotient sets associated with 
individual constraints (it is a partition on K, ordered as a chain with a guaranteed minimum). This 
simplified set can then be combined with the quotient set associated with the third constraint in the 
hierarchy, K/C3, in exactly the same manner as described for K/C1 and K/C2. This process is repeated 
recursively until the quotient sets associated with all of the constraints have been incorporated. The 
result of this process is provably equivalent to the process as I have defined it in the text.  

18  See the discussion on the introductory section to this chapter. We need to confirm that the explicatum 
agrees with our intuitions about the explicandum. 
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domination” principle. This is the focus of §3.2.1. After this some properties of the set 

〈K/CCom, ≤Com〉 are discussed. Section §3.2.2 first shows that that ≤Com imposes a chain 

ordering on K/CCom, and §3.2.3 then that this chain is guaranteed to have a minimum. 

Section §3.2.4 then shows that the set K/CCom is a partition on the candidate set. Finally, 

§3.2.5 shows that the members of K/CCom are equivalence classes on the candidate set K. 

3.2.1 〈K/CCom, ≤Com〉 and the strictness of strict domination 

An OT grammar is a ranking between the constraints in CON. The candidate set is 

ordered relative to the constraint ranking with higher ranked constraints taking absolute 

precedence over lower ranked constraints. In particular, the highest ranked constraint that 

differentiates between two candidates takes precedence over all lower ranked constraints 

that also differentiate between these two candidates. Concretely, consider two candidates 

k1 and k2, and two constraints C1 and C2 ranked as ||C1 o C2||. Suppose that C1 prefers k1 

over k2, but that C2 prefers k2 over k1, i.e. C1(k1) < C1(k2) but C2(k1) > C2(k2). Because of 

the ranking ||C1 o C2||, the ordering that C1 imposes on k1 and k2 takes precedence – that 

is, for this mini-grammar as a whole, k1 is more harmonic than k2. This property of an OT 

grammar has been dubbed the “strictness of strict domination” or “strictness of 

domination” (McCarthy, 2002b:4, Prince and Smolensky, 1993:78, 1997:1604). 

Since classic OT typically cares only about the relation between the winner and 

the mass of losers, strictness of domination is usually discussed as if it applies only to the 

relations between the winner and the losers. However, there is nothing that prohibits us 

from assuming that it also applies to the relationships between the losers, and that is in 

fact the assumption that I make in this dissertation. Strictness of domination therefore 

applies to the harmonic ordering relationships between any two candidates. In general 
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then, it is the highest ranked constraint in terms of which any two candidates are 

differentiated that determines the harmonic relation between them. For any two 

candidates k1 and k2, if C1 is the highest ranked constraint that differentiates between 

them, then these two candidates will be harmonically ordered in terms of C1. Stated 

differently, if C1(k1) < C1(k2), then |k1 ™ k2| even if there is some lower ranked constraint 

C2 such that C2(k1) > C2(k2). 

The set 〈K/CCom, ≤Com〉 can only be viewed as the output of an OT grammar, if it 

can be shown that this set abides by the strictness of domination principle. This 

requirement is stated somewhat informally in (52). 

(52) Strictness of domination with reference to 〈K/CCom, ≤Com〉, somewhat 
informally 

 Let K1, K2 ∈ K/CCom, with k1 ∈ K1 and k2 ∈ K2. Then: 

K1 <Com K2 iff the highest ranked constraint that distinguishes between k1 and k2 

prefers k1 over k2. 

The rest of this section is dedicated to showing that 〈K/CCom, ≤Com〉 does indeed 

abide by the strictness of domination principle. This is done in three steps: First, the 

concept “crucial constraint” is defined. The crucial constraint for two candidates is the 

highest ranked constraint that differentiates between them. Then, strictness of domination 

with reference to 〈K/CCom, ≤Com〉 is defined more precisely by using the concept of crucial 

constraints. Finally, it is proved that 〈K/CCom, ≤Com〉 abides by strictness of domination. 

 77



(53) Def. 23: Crucial constraints 

Let k1, k2 ∈ K, and let the grammar under consideration be ||C1 o C2 o … o Cn||. 

Then we define Crux1,2, the crucial constraint for k1 and k2, as follows: 

Crux1,2 = Ci such that Ci(k1) ≠ Ci(k2) and ¬∃j (j < i and Cj(k1) ≠ Cj(k2)).19

 This definition identifies for any two candidates the highest ranked constraint that 

assigns a different number of violations to these two candidates. Now that the concept of 

a crucial constraint has been defined, we can state more formally what it would mean for 

the set 〈K/CCom, ≤Com〉 to abide by the strictness of domination principle. In (54) I first 

state the formal definition of strictness of domination. In (55) I then prove that 〈K/CCom, 

≤Com〉 does indeed abide by this principle. 

(54) Def. 24: Strictness of domination with reference to 〈K/CCom, ≤Com〉 

Let k1, k2 ∈ K, and K1, K2 ∈ K/CCom such that k1 ∈ K1 and k2 ∈ K2.  

Let ƒki„Cj be the equivalence class of ki ∈ K in terms of constraint Cj as defined in 

Def. 4 (13) above, and ≤Cj the ordering associated with this constraint as defined 

in Def. 6 (17) above. 

Let Crux1,2 be the crucial constraint as defined just above in Def. 23 (53), and 

≤Crux1,2 the ordering that EVAL imposes on the candidate set with reference to 

Crux1,2.  Then: 

K1 <Com K2 iff ƒk1„Crux1,2 <Crux1,2 ƒk2„Crux1,2. 

                                                 
19  Note that this definition implies that there will be no crucial constraints for two candidates that receive 

the same number of violations in terms of every constraint. This does not negate the result proved just 
below about the strictness of strict domination. Since all constraints agree on the relationship between 
two such candidates, it is not possible that a later constraint can disagree on an earlier constraint on the 
ordering relationship between two such candidates.  
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(55) Theorem 7: Strictness of domination and 〈K/CCom, ≤Com〉 

 〈K/CCom, ≤Com〉 abides by strictness of domination. 

Proof of Theorem 7: Let k1, k2 ∈ K, and K1, K2 ∈ K/CCom such that k1 ∈ K1 and k2 

∈ K2. Let Crux1,2 be the crucial constraint for k1 and k2 as defined in Def. 23 (53), and 

≤Crux1,2 the ordering associated with this constraint as defined in Def. 6 (17).  

We need to show that K1 <Com K2 iff ƒk1„Crux1,2 <Crux1,2 ƒk2„Crux1,2. I will start by 

showing that K1 <Com K2 implies ƒk1„Crux1,2 <Crux1,2 ƒk2„Crux1,2. The basic strategy in this 

proof is to work backwards through successive definitions until a statement can be made 

in terms of constraints. Since constraints have ù as range, it is easy to draw inferences on 

orderings associated with constraints. 

Assume K1 <Com K2. By Def. 18 (43) and Def. 17 (42), the existence of K1, K2 ∈ 

K/CCom implies the existence of some 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C× such that K1 = 

(ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩  ƒxn„Cn), and similarly the existence of some 〈ƒy1„C1, ƒy2„C2 … 

ƒyn„Cn〉 ∈ K/C× such that K2 = (ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩  ƒyn„Cn). From this is also follows 

that Intesect-1(K1) = 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉, and Intesect-1(K2) = 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉 

(Def. 21 (48)). And since Intersect-1 is order preserving (Lemma 3 (50)), K1 <Com K2 

implies 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 <× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉. By the definition of ≤× (Def. 

16 (38)), we then have that there is some i such that for all j ≤ i, ƒxj„Cj =Cj  ƒyj„Cj and ƒxi„Cj 

<Ci ƒyi„Cj. Then by the definition of ≤Ci (Def. 6 (17)), it follows that there is some i such 

that for all j ≤ i, Cj(xj) = Cj(yj) and Ci(xi) < Ci(yi). Ci is then the highest ranked constraint 

in terms of which the candidates in K1 and K2 differ. 
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Since k1 ∈ K1 and k2 ∈ K2 (by assumption), we therefore also have Ci (k1) < Ci 

(k2). But since Ci is also the highest ranked constraint in terms of which k1 and k2 differ, it 

follows by Def. 23 (53) of crucial constraints that Ci is the crucial constraint for k1 and k2, 

i.e. Ci = Crux1,2. Therefore we have Crux1,2(k1) < Crux1,2(k2). But by the definition of the 

ordering ≤C (Def. 6 (17)) we then have ƒk1„Crux1,2 <Crux1,2 ƒk2„Crux1,2. And therefore we have 

that  K1 <Com K2 implies ƒk1„Crux1,2 <Crux1,2 ƒk2„Crux1,2. 

And the argument can be reversed to prove the converse.   � 

 We can again check to confirm that this Theorem is indeed true of our example. 

In (56) I repeat from (39) the orderings ≤Ci associated with each of the three constraints, 

as well as the ordering ≤Com from (46) associated with the grammar as a whole. 

(56) Orderings associated with constraints and the grammar as a whole 

      〈K/C1, ≤C1〉 〈K/C2, ≤C2〉 〈K/C3, ≤C3〉         〈K/CCom, ≤Com〉 

  {c3}    {c5}  {c1, c4}   {c3} 

{c1, c4} {c2, c3}    {c2}             {c1, c4} 

{c2, c5} {c1, c4} {c3, c5}    {c5} 

        {c2} 

 What we see is that the final ordering ≤Com does not contradict the ordering ≤C1 

associated with the highest ranked constraint C1. For instance, we have {c3} <C1 {c2, c5} 

which implies that C1(c3) < C1(c5). On the other hand we have {c5} <C2 {c2, c3} which 

implies C2(c5) < C2(c3). C1 and C2 therefore conflict in how they rate c3 and c5. However, 

since C1 dominates C2, the ordering ≤Com associated with the grammar as a whole agrees 

with the ordering ≤C1 associated with C1 – i.e. {c3} <Com {c5}. 
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 We have therefore now established that 〈K/CCom, ≤Com〉 abides by strictness of 

domination. This means that this set does indeed agree with our intuitions about what the 

output of an OT grammar should be like. This confirms that the procedures described 

above for arriving at this set, is an accurate depiction of what EVAL does to the 

candidate set. Now that we have established that the set 〈K/CCom, ≤Com〉 is of the correct 

form, we can investigate some its properties in more detail. 

3.2.2  ≤Com defines a chain 

In §2.2.2 I showed that the ordering that EVAL imposes on the candidate set with regard 

to each individual constraint is a chain ordering. In this section I will show that this also 

true of the ordering that EVAL imposes on the candidate set in terms of the grammar as a 

whole – i.e. not only is ≤C for every C ∈ CON a chain, but so is the result of combining 

each of these orderings into the conglomerate ordering ≤Com. For a discussion of what a 

chain see, refer to Def. 10 (26) above. 

(57) Theorem 8:  That ≤Com defines a chain 

 The ordering that ≤Com imposes on K/CCom is a chain. 

 Proof of Theorem 8: The proof presented here follows the same basic strategy as 

the proof above for Theorem 7 – that is, substituting backwards through successive 

definitions. Let K1, K2 ∈ K/CCom, with K1 and K2 not necessarily distinct.  

By Def. 18 (43) and Def. 17 (42), the existence of K1, K2 ∈ K/CCom implies the 

existence of some 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C× such that K1 = (ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩  

ƒxn„Cn), and similarly the existence of some 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉 ∈ K/C× such that K2 = 

(ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩  ƒyn„Cn).  
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Now, let ≤Ci be the ordering that EVAL imposes on the candidate set relative to 

constraint Ci (Def. 6 (17)). Since ≤Ci is a chain (Theorem 4 (27)), there are now three 

possible scenarios: 

Scenario 1: For all i ≤ n, ƒxi„Ci =Ci ƒyi„Ci. Then, by the definition of ≤× (Def. 16 

(38)), it follows that 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 =× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉. This again 

implies by the definition of ≤Com (Def. 19 (45)), that (ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩  ƒxn„Cn) =Com 

(ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩  ƒyn„Cn), and therefore that K1 =Com K2. 

Scenario 2: There is some k such that ƒxk„Ck >Ck ƒyk„Ck, and for all i ≤ k, ƒxi„Ci =Ci 

ƒyi„Ci. Then, by the definition of ≤× (Def. 16 (38)), it follows that 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 

>× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉, which again implies that (ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩  ƒxn„Cn) >Com 

(ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩  ƒyn„Cn) (Def. 19 (45)), and therefore that K1 >Com K2. 

Scenario 3: There is some k such that ƒxk„Ck <Ck ƒyk„Ck, and for all i ≤ k, ƒxi„Ci =Ci 

ƒyi„Ci. Then, by the definition of ≤× (Def. 16 (38)), it follows that 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 

<× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉, which again implies that (ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩  ƒxn„Cn) <Com 

(ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩  ƒyn„Cn) (Def. 19 (45)), and therefore that K1 <Com K2. 

Finally, we then have that either K1 =Com K2, or K1 >Com K2, or K1 <Com K2, and 

therefore that ≤Com defines a chain on K/CCom.     � 

 It is clear that this Theorem is true of the example that we have been using 

throughout the discussion. Referring back to the ordering 〈K/CCom, ≤Com〉 in (56) confirms 

that indeed any two elements on this ordering are comparable. 
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 Recall that the set 〈K/CCom, ≤Com〉 is the final output of the grammar. This set 

represents the ordering that EVAL imposes on the candidate set with reference to the 

complete constraint hierarchy. The fact that this set is ordered as a chain is important. It 

shows that there is no indeterminacy in the output of the grammar. For any given 

candidate, it is possible to determine how it is harmonically related to any other candidate. 

Consider any two candidates k1 and k2. If k1 and k2 are both members of the same member 

of K/CCom, i.e. k1, k2 ∈ K1 ∈ K/CCom, then k1 and k2 are equally harmonic. The grammar 

can then not distinguish between these two candidates, and they can be considered as 

grammatically indistinct.20 However, if k1 and k2 belong to different members, K1 and K2, 

of K/CCom, i.e. k1 ∈ K1, k2 ∈ K2 and K1 ≠ K2, then either k1 is more harmonic than k2 or k2 

is more harmonic than k1. 

3.2.3 The chain defined by ≤Com always has a minimum 

In §2.2.3 above I showed that the chain ordering ≤C associated with each individual 

constraint C is guaranteed to have a minimum. In this section I will show that the same is 

true for the ordering ≤Com (the ordering that EVAL imposes on the candidate set with 

reference to the whole grammar). For a definition of a minimum, see Def. 11 (28) above. 

(58) Theorem 9: That 〈K/CCom, ≤Com〉 always has a minimum 

 The ordering ≤Com always has a minimum in K/CCom. 

 Proof of Theorem 9: This theorem is proved by assuming the opposite, and then 

showing that this leads to a contradiction. In particular, I will show that assuming that 

                                                 
20  See the discussion in §3.2.5 below about grammatical indistinctness. 
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≤Com does not have a minimum in K/CCom implies that the ordering ≤× on K/C× does not 

have a minimum, contra Lemma 2 (41). 

 Assume that ≤Com does not have a minimum in K/CCom. We have established just 

above that ≤Com defines a chain on K/CCom (Theorem 8 (57)). From this it follows that the 

only way in which ≤Com cannot have a minimum in K/CCom, is if ≤Com defines an infinitely 

descending chain on K/CCom. But if ≤Com defines an infinitely descending chain on 

K/CCom, then for all K1 ∈ K/CCom, we have that there is some K2 ∈ K/CCom such that K2 

<Com K1.  

 We have seen above that Intersect-1 is an order preserving map between K/CCom 

and K/C× (Lemma 3 (50)). The ordering ≤× on K/C× will therefore inherit the properties of 

the ordering ≤Com on K/CCom. It then follows that ≤× on K/C× is also an infinitely 

descending chain. But this contradicts Lemma 2 (41) which asserts that ≤× is guaranteed 

to have a minimum in K/C×.        � 

 The dual of this theorem is obviously not true – that is, it is not the case that the 

set 〈K/CCom, ≤Com〉 is guaranteed to have a maximum. There are constraints that can in 

principle assign an unbounded number of violations (such as DEP, ONSET, etc.). 21  

Because of this, it is possible that ≤Com can define an infinitely ascending chain on 

K/CCom. 

                                                 
21  See footnote 10 above. 
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 It is again clear that this Theorem is true of the example that we have been 

discussing throughout. {c3} in (56) precedes all other members of K/CCom in terms of the 

ordering ≤Com, and {c3} is therefore the minimum of the ordering ≤Com in the set K/CCom. 

Theorem 9 is a very important result. The set 〈K/CCom, ≤Com〉 is the final output of 

the grammar. In order for this output to be in agreement with the way that we standardly 

think about an OT grammar, it should be possible to read off this set what the optimal 

candidate of classic OT is. This optimal candidate is the minimum of the set K/CCom 

under the ordering ≤Com. Since this minimum is guaranteed to exist it follows that we will 

always be able to determine what the optimal candidate of classic OT should be.  

But there is another reason why it is important that the set 〈K/CCom, ≤Com〉 is 

guaranteed to have a minimum. From Theorem 8 (57) we know that 〈K/CCom, ≤Com〉 is a 

chain. If this chain had no minimum and no maximum, then it would have been 

impossible to identify individual members of this set with reference to the ordering on the 

set.  For any member of this set there would then always have been another member that 

precedes it and another member that follows it. How would language users then access 

the information contained in this ordered set? There has to be a unique point on the 

ordering with regard to which the members of the set can be identified in terms of the 

ordering on the set. The minimum on the chain can serve this purpose. Since only one 

member of the set K/CCom can be the minimum of this set under the ordering ≤Com, we can 

uniquely identify this one member of K/CCom in terms of the ordering ≤Com. All other 

members of K/CCom can then also be uniquely identified by stating their relationship to 

the minimum in terms ≤Com. This minimum on the set 〈K/CCom, ≤Com〉 serves as the point 
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through which language users can access the information contained in the set 〈K/CCom, 

≤Com〉. 

3.2.4 The set K/CCom is a partition on K 

In §2.3.4 above I showed the quotient set K/C associated with every constraint C is a 

partition on the candidate set K. This means that every candidate k ∈ K was contained in 

exactly one member of K/C. This result was important. The fact that every candidate is 

contained in a member of K/C implies that the ordered set 〈K/C, ≤C〉 contains information 

about every candidate. The fact that every candidate is contained in only one member of 

K/C implies that every candidate can occur in only one place in the ordering ≤C. The final 

output of the grammar is the set 〈K/CCom, ≤Com〉. In this section I will show that this set is 

also a partition on the candidate set K. This result will assure that also in this final output 

of the grammar every candidate is guaranteed to occupy exactly one position. For a 

definition of a partition, refer to Def. 12 (30) above.  

(59) Theorem 10: That K/CCom is a partition on K 

 K/CCom is a partition on K. 

 Proof of Theorem 10: I will consider each of the three requirements for K/CCom to 

be a partition on K in turn. 

 Consider first the requirement that K/CCom consists of non-empty subsets of K. 

This follows directly from the definitions of K/CCom (Def. 18 (43)) and Intersect (Def. 17 

(42)). K/CCom is defined such that all of its members are in the image of the set K/C× 
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under the relation Intersect.22 And Intersect is defined as relation into ℘(K) and such that 

∅ is not in its range. We therefore have that all the members of K/CCom are non empty 

subsets of K. 

 Now consider the second requirement, that the members K/CCom be exhaustive 

subsets of K, i.e. that every k ∈ K is a member of some member of K/CCom. For all C ∈ 

CON, let K/C be the quotient set associated with constraint C as defined in Def. 5 (15), 

and ƒx„C ∈ K/C, the equivalence class of x in terms of C (Def. 4 (13)). By Theorem 6 (31) 

we then have that K/C is a partition on K, and therefore for every k ∈ K there is some ƒx„C 

∈ K/C such that k ∈ ƒx„C. 

 Now, let K/C× be the Cartesian product over the quotient sets associated with each 

constraint (Def. 14 (35)), and 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C×. Then for every k ∈ K there 

is some 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C× such that k ∈ ƒxi„Ci for all i ≤ n. From the 

definition of Intersect (Def. 17 (42)), we then have that for every k ∈ K, there is some 

〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C× such that k ∈ Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉). And 

from the definition of K/CCom (Def. 18 (43)) we have that Intersect(〈ƒx1„C1, ƒx2„C2 … 

ƒxn„Cn〉) ∈ K/CCom. Therefore, we have for every k ∈ K that k ∈ Intersect(〈ƒx1„C1, ƒx2„C2 … 

ƒxn„Cn〉) ∈ K/CCom. 

 Now consider the third requirement, that the members of K/CCom be disjoint 

subsets of K. I will show that any two members of K/CCom that have an element in 

common are identical. Let K1, K2 ∈ K/CCom such k ∈ K1 and k ∈ K2. The existence of K1, 

                                                 
22  The image of set A under the relation F is defined as the set of all u such that there is some v ∈ A such 

that u = F(v) (Enderton, 1977:44), i.e. the image of A under F := {v | ∃u (u ∈ A & F(u) = v)}. 
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K2 implies the existence of 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C× and 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉 ∈ 

K/C× such that Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) = K1 and Intersect(〈ƒy1„C1, ƒy2„C2 … 

ƒyn„Cn〉) = K2  (Def. 17 (42) and Def. 18 (43)). Therefore K1 = ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩ ƒxn„Cn, 

and K2 = ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩ ƒyn„Cn. But since k ∈ K1 and k ∈ K2 (by assumption), it 

follows that k ∈ ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩ ƒxn„Cn and k ∈ ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩ ƒyn„Cn. 

Therefore, for all i ≤ n, k ∈ ƒxi„Ci and k ∈ ƒyi„Ci. 

 But if k ∈ ƒxi„Ci, then xi ≈Ci k, and similarly if k ∈ ƒyi„Ci, then yi ≈Ci k (Def. 4 (13)). 

But ≈Ci is an equivalence relation, and therefore symmetric and transitive (Theorem 2 

(12)). Therefore, if yi ≈Ci k, then k ≈Ci yi, and if (xi ≈Ci k and k ≈Ci yi), then xi ≈Ci yi. From 

this it follows that xi ∈ ƒyi„Ci, so that (xi ∈ ƒyi„Ci and xi ∈ ƒxi„Ci). But ƒxi„Ci and ƒyi„Ci are 

both elements of K/Ci, the quotient set associated with Ci (Def. 5 (15)). And we know 

that K/Ci is a partition on K (Theorem 6 (31)).  The members of K/Ci are therefore 

disjoint, and therefore (xi ∈ ƒyi„Ci and xi ∈ ƒxi„Ci) implies ƒyi„Ci = ƒxi„Ci. Then we have that 

〈ƒx1„C1, ƒx2„C1 … ƒxn„Cn〉 = 〈ƒy1„C1, ƒy2„C1 … ƒyn„Cn〉. 

 From 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 = 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉 it follows that 

Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) = Intersect(〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉). And since K1 = 

Intersect〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) and K2 = Intersect(〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉), it follows 

that K1 = K2. 

 Finally, we then have that k ∈ K1 and k ∈ K2 implies K1 = K2, and therefore that 

the members of K/CCom are disjoint.       � 
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We can again check that this Theorem holds of the mini grammar that have been 

considering as an example throughout this chapter. The set K/CCom for our mini grammar 

is {{c3}, {c1, c4}, {c5}, {c2}} (see (51)). In our example the candidate set K has only five 

members, i.e. K = {c1, c2, c3, c4, c5}. It is clear that each member of K is included in 

exactly one member of K/CCom. 

 The fact that K/CCom is a partition on K is an important result. The ordered set 

〈K/CCom, ≤Com〉 is the final output of the grammar. The fact that every candidate is 

included in one member of K/CCom implies that every candidate is represented in the final 

output of the grammar. The fact that every candidate is included in only member of 

K/CCom implies that every candidate occupies a unique place in the final output of the 

grammar. Together with the fact that ≤Com defines a chain on K/CCom (Theorem 8 (57)), 

this means that there is no indeterminacy in the output of the grammar. It is always 

possible for any two candidates to determine how they are harmonically related to each 

other with regard to the ranking between the constraints. Consider K1, K2 ∈ K/CCom, and 

k1 ∈ K1, k2 ∈ K2. If K1 =Com K2, then we know that k1 and k2 are equally well-formed in 

terms of the grammar under consideration. If K1 <Com K2, then we know that k1 is more 

well-formed that k2. If K1 >Com K2, then we know that k1 is less well-formed that k2. Of 

particular relevance for the topic of this dissertation, is that this implies that any two 

candidates can be ordered with respect to each other – not only the best candidate in 

relation to the losers, but even any two losers in relation to each other. 

3.2.5  The members of K/CCom as equivalence classes on K 

In §2 above I discussed the quotient sets K/Ci associated with the different constraints Ci. 

These quotient sets are not sets of candidates, but sets of sets of candidates. The set 
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K/CCom is similar to these quotient sets. It is also a set of sets of candidates. However, 

there is an important difference between and K/CCom and the sets associated with 

individual constraints. Let K/C1 be the quotient set associated with constraint C1, and 

ƒk1„C1 ∈ K/C1. ƒk1„C1 is therefore an equivalence class in terms of constraint C1, implying 

that all candidates in ƒk1„C1 receive the same number of violations in terms of C1. If we 

have both k1, k2 ∈ ƒk1„C1, then C1(k1) = C1(k2). In terms C1 these two candidates are 

indistinguishable. However it is possible that there is some other constraint in terms of 

which these two candidates differ – i.e. there could be some other constraint C2 such that 

C2(k1) ≠ C2(k2). Although k1 and k2 are indistinguishable in terms of C1 they might still be 

distinct from each other.  

Now consider the set K' ∈ K/CCom, and k1, k2 ∈ K'. The two candidates k1 and k2 

are now completely indistinguishable in terms of the grammar – they receive exactly the 

same number violations in terms of every constraint. Two candidates that belong to same 

set of candidates in K/CCom are therefore grammatically indistinct. 23  Although each 

member of K/CCom can therefore contain more than one candidate, the grammar cannot 

distinguish between them. When we talk about a “candidate” in the output of an OT 

grammar, what we are actually referring to is rather a set of grammatically indistinct 

candidates.  In this section I will prove that the sets in K/CCom do indeed contain only 

grammatically indistinct candidates. In order to show this, I will first define an 

equivalence relation ≈Com on the candidate set, and then show that the members of K/CCom 

                                                 
23  Samek-Lodovici and Prince (1999) also use the concept of grammatical indistinctness. See also 

Hammond (1994, 2000) who uses this idea as a method of accounting for variation in the output – he 
assumes that variation arises when the set of best candidates has more than one member. 
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can be defined in terms of ≈Com. For a definition of an equivalence relation, see Def. 3 (11) 

above. 

(60) Def. 25: ≈Com as a relation on K 

 Let the grammar under consideration be ||C1 o C2 o … o Cn||, and k1, k2 ∈ K. 

Then we define ≈Com as follows: 

 ≈Com ⊆ K × K such that k1 ≈Com k2 iff for all i ≤ n Ci(k1) = Ci(k2) 

(61) Theorem 11: That ≈Com is an equivalence relation 

 ≈Com is an equivalence relation on K. 

 Proof of Theorem 11: ≈Com is by definition a binary relation on K. All that needs 

to be shown then is that it is reflexive, transitive and symmetric. Since it is defined in 

terms of constraints this is a rather straightforward matter. Constraints are functions into 

ù, and the relation = on ù is reflexive, transitive and symmetric. I consider each of the 

three requirements in turn below. 

 (i) That ≈Com is reflexive. Consider any candidate k ∈ K. Since C(k) = C(k) for all 

C ∈ CON, it follows from the definition of ≈Com (Def. 25 (60)) that k ≈Com k. Therefore, 

≈Com is reflexive. 

 (ii) That ≈Com is transitive. Consider any three candidates k1, k2, k3 ∈ K such that 

k1 ≈Com k2 and k2 ≈Com k3. By the definition of ≈Com (Def. 25 (60)) we then have that for all 

constraints C ∈ CON, C(k1) = C(k2) and C(k2) = C(k3). But since = is transitive on ù, it 

follows from that C(k1) = C(k3). From the definition of ≈Com it then follows that k1 ≈Com k3. 

Therefore, ≈Com is transitive. 

 91



 (iii) That ≈Com is symmetric. Consider any two candidates k1, k2 ∈ K such that k1 

≈Com k2.  By the definition of ≈Com (Def. 25 (60)) we then have that for all constraints C ∈ 

CON, C(k1) = C(k2). But since = is symmetric on ù, it follows that C(k1) = C(k2) implies 

C(k2) = C(k1). And then again by the definition of ≈Com it follows that k2 ≈Com k1. 

Therefore, ≈Com is symmetric.        � 

Now we can show that the members of the set K/CCom can be fully defined in 

terms of the equivalence relation ≈Com. 

(62) Theorem 12: The members of K/CCom can be fully defined in terms of ≈Com

Let K be the candidate set, K1 ∈ K/CCom and k1 ∈ K1. Then: 

(i) ∀k2 ∈ K1, k1 ≈Com k2, and 

(ii) ∀k3∈ K such that k1 ≈Com k3, k3∈ K1. 

Proof of Theorem 12: Let ƒki„Cj be the equivalence class of candidate ki in terms of 

constraint Cj (Def. 4 (13)). Now we can consider each of the two clauses of Theorem 12 

in turn.  

(i) We have by assumption that k1, k2 ∈ K1. And the existence of K1 implies that 

there is some n-tuple 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C× such that K1 = Intersect(〈ƒx1„C1, 

ƒx2„C2 … ƒxn„Cn〉) = ƒx1„C1 ∩ ƒx2„C2 ∩… ∩ ƒxn„Cn (Def. 17 (42) and Def. 18 (43)). And 

since k1, k2 ∈ K1, it follows that k1, k2 ∈ ƒx1„C1 ∩ ƒx2„C2 ∩… ∩ ƒxn„Cn, and therefore that 

for all i ≤ n, k1, k2 ∈ ƒx„Ci. By the definition of equivalence classes associated with 

individual constraints (Def. 4 (13)), it then follows that for all i ≤ n, Ci(k1) = Ci(k2). And 

then by the definition of the relation ≈Com (Def. 25 (60)) we have k1 ≈Com k2. 
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(ii) We have by assumption that k1∈ K1∈ K/CCom, k3 ∈ K, and k1 ≈Com k3. We need 

to show that then also k3∈ K1. 

Consider first the assumption that k1∈ K1 ∈ K/CCom. The existence of K1 implies 

that there is some n-tuple 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C× such that K1 = Intersect(〈ƒx1„C1, 

ƒx2„C2 … ƒxn„Cn〉) = ƒx1„C1 ∩ ƒx2„C2 ∩… ∩ ƒxn„Cn (Def. 17 (42) and Def. 18 (43)). And 

since by assumption k1 ∈ K1, it follows that for all i ≤ n, k1 ∈ ƒxi„Ci, where ƒxi„Ci is the 

equivalence class of candidate x in terms of constraint Ci (Def. 4 (13)).  

Now consider the assumption that k1 ≈Com k3. From the definition of ≈Com (Def. 25 

(60)), we have that for all i ≤ n, Ci(k1) = Ci(k3). From the definition of the relation ≈C (Def. 

2 (9)) it then follows that for all i ≤ n, k1 ≈Ci k3. And since ≈Ci is an equivalence relation 

and therefore symmetric (Theorem 2 (12)), we also have k3 ≈Ci k1. From the definition for 

equivalence classes associated with individual constraints (Def. 4 (13)), it then follows 

that for all i ≤ n, k1, k3 ∈ ƒxi„Ci. 

The equivalence classes of each constraint are collected into a quotient set (Def. 5 

(15)). Therefore for all i ≤ n, we have that ƒxi„Ci ∈ K/CCi. From Theorem 6 (31) we know 

that these quotient sets are partitions on K, and therefore that the members of the quotient 

sets are disjoint. The equivalence class that k1 and k3 belong to for each constraint, is 

therefore also the only equivalence class that each of them belongs to for that constraint. 

This means that the Cartesian product taken over the quotient sets of the different 

constraints, K/C×, will contain one and only one n-tuple 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 such that 

for all i ≤ n, k1, k3 ∈ ƒxi„Ci. 
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We have seen above that k1∈ K1 ∈ K/CCom implies the existence of some n-tuple 

〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C× such that for all i ≤ n, k1 ∈ ƒxi„Ci. But since only one such 

an n-tuple exists for k1, it is also the n-tuple for which it is true that for all i ≤ n, k3 ∈ ƒxi„Ci. 

Then we have that for all i ≤ n, k3 ∈ ƒx1„C1 ∩ ƒx2„C2 ∩… ∩ ƒxn„Cn. And by the definition of 

Intersect (Def. 17 (42)) it follows that k3 ∈ Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉). But as 

shown above, K1 = Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉). Therefore k3 ∈ K1. 

Then we finally have that k1∈ K1 ∈ K/CCom and k1 ≈Com k3, implies k3∈ K1.       � 

It is therefore possible to fully define the members of the set K/CCom in terms of 

the equivalence relation ≈Com.24 This means that the candidates that are members of any 

given one of the sets in K/CCom all have exactly the same number of violations in terms of 

every constraint. As far as the grammar is concerned, these candidates are all exactly the 

same. If our purpose is to describe the grammatical competence of the language user, this 

means that we can treat all candidates in each of the sets in K/CCom alike, as if they are 

actually one single candidate – since according the grammar they are identical. 

We can again check whether Theorem 12 is true of the example that we have been 

discussing throughout this chapter. The set K/CCom in this example is  K/CCom = {{c3}, {c1, 

c4}, {c5}, {c2}} (see (51) above).There is only one member of this set that contains more 

than one candidate, namely {c1, c4}. If Theorem 12 is true of this example, then the two 

candidates c1 and c4 have to receive the same number of violations in terms of every 

constraint. Referring back to the tableau in (6) confirms that this is indeed true. We have 

                                                 
24  The set K/CCom is therefore also the quotient set of the relation ≈Com on the candidate set. 
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C1(c1) = C1(c4) = 1, C2(c1) = C2(c4) = 2, and C3(c1) = C3(c4) = 0. In this example the 

grammar can therefore not distinguish between these two candidates. 

 

4. Summary 

This chapter has investigated the formal properties of EVAL, the evaluative component 

of an OT grammar. The most important result of this chapter is that it established that a 

rank-ordering model of EVAL is entirely consistent with the basic architecture of a 

classic OT grammar. No changes or additions were made to the classic OT architecture in 

the development of this model. The rank-ordering model simply utilizes information that 

a classic OT grammar anyway generates. This chapter has developed a rigorous 

mathematical model of how the information generated by a classic OT grammar can be 

processed in order to establish a harmonic rank-ordering on the complete candidate set. 

 More specifically, this chapter has shown that: (i) The full candidate set is rank-

ordered with respect to every constraint, and that this ordering is a chain with a minimum. 

(ii) The orderings of individual constraints can be combined to result in a final 

conglomerate ordering for the whole grammar. I showed that this conglomerate ordering 

agrees with our intuitions about the workings of an OT grammar (it abides by the 

principle of “strictness of strict domination”). The characteristics of this conglomerate 

ordering were investigated, and it was shown that it is an ordering on the full candidate 

set, that it is a chain ordering, and that it is guaranteed to have a minimum. 

 These results are important for our understanding of an OT grammar. Below I 

mention some of the most important perspectives on an OT grammar that this model 
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provides, and where appropriate I indicate how I use that result in the rest of the 

dissertation. 

(i) Richness of information. The model developed in this chapter shows that a 

classic OT grammar generates a wealth of information about the relationships between 

the candidates. The information generated goes much further than simply distinguishing 

between the single optimal candidate and the losers. The grammar actually generates a 

much more detailed data structure that includes information about the harmonic 

relationship between any two candidates – i.e. also between candidates that are usually 

considered as losers.  

An important question that this raises is whether this information is grammatically 

relevant. If the answer to this question is in the negative, then a classic OT grammar is 

much too powerful. It then massively over generates information. A more economic 

grammar would then have been one that would not have generated this information at all.  

However, this chapter has shown that this information follows from the basic 

primitives of a classic OT grammar (constraint violation, constraint ranking, harmonic 

comparison between candidates). To formulate an alternative version of an OT grammar 

that does not generate this information will therefore be very difficult, if not impossible. 

This leads to the conclusion that it might be better to go the other direction – to assume 

that this information generated by the grammar is grammatically relevant.  

This is the route that I take in this dissertation. I show several spheres in language 

performance where language users access and use this information. In variable 

phenomena language users access more candidates than just the single best candidate. 

They also access some of the candidates that are traditionally considered to be losers. 
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However, this implies that the “losers” cannot be a large amorphous group – then there 

would be no information on which language users can rely to select from among the 

“losers”. The information about the relationships between the losers is therefore crucial. 

 Also when rating the well-formedness of non-words language users access and 

use the richer information structure imposed by EVAL on the candidate set. Non-words 

that language users rate as more well-formed are simply non-words that correspond to 

candidates that occupy a higher slot in the rank-ordering that EVAL imposes on the 

candidate set. Similarly, I show that language users also use this information in lexical 

decision tasks. The lower a non-word occurs in the rank-ordering that EVAL imposes on 

the candidate set, the less seriously language users will consider the possibility that it is a 

word. Non-words corresponding to candidates lower in the rank-ordered candidate set, 

are therefore rejected quicker than non-words corresponding to candidates higher in the 

rank-ordered candidate set. 

(ii) No indeterminacy. EVAL imposes two kinds of orderings on the candidate set 

– first EVAL orders the candidate set with regard to individual constraints (§2), and 

secondly EVAL orders the candidate set with regard to the whole grammar (§3). Both of 

these orderings have been shown to be on the whole candidate set (Theorem 6 (31) and 

Theorem 10 (59)). It has also been established that both of these orderings are chains 

(Theorem 4 (27) and Theorem 8 (57)). These two facts together imply that there is never 

indeterminacy in an OT grammar. It is always possible to determine for any two 

candidates how they are related to each other in terms of their harmony, whether with 

respect to an individual constraint or with respect to the whole grammar. 
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(iii) A guaranteed output/unique access point. The chain that EVAL imposes on 

the candidate set is guaranteed to have a minimum – again this holds of both the ordering 

with respect to individual constraints (Theorem 5 (29)) and with respect to the grammar 

as a whole (Theorem 9 (58)). Especially the fact that the chain associated with the whole 

grammar is guaranteed to have a minimum is relevant. This means that an OT grammar 

will always select a best candidate (or best set of candidates) from the candidate set. OT 

is therefore not a theory in which a derivation can crash because some input cannot be 

mapped onto any output candidate. OT is a forced-choice theory of grammar – the 

grammar is forced to select from the candidate set a best candidate. 

There is another reason why it is important that the chain ordering imposed on the 

candidate set is guaranteed to have a minimum. This ensures that there is a uniquely 

identifiable point in terms of which access to the rank-ordered candidate set can be 

defined. A chain ordering with neither a maximum nor a minimum is both infinitely 

ascending and infinitely descending. If the chain ordering imposed by EVAL on the 

candidate set had neither a maximum nor a minimum, then no candidate could be 

uniquely identified with respect to its position in the chain ordering. For any candidate 

there would always be infinitely many candidates above it and infinitely many candidates 

below it. However, since the rank-ordered candidate set is guaranteed to have a minimum, 

there is a point on the candidate set that can be uniquely identified simply with respect to 

its position in the rank-ordering. In the rest of the dissertation I argue that the language 

user accesses the rank-ordered candidate set from its minimum. The minimum in the 

chain-ordering (the best candidate) is the most accessible, and the accessibility of 

candidates decreases the lower down they occur in the chain-ordering. In a variable 
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phenomenon the candidate that occupies the minimum position is therefore the most 

frequently observed output, the candidate that occupies the second slot is the second most 

frequently observed output, etc. In gradient well-formedness judgments, the candidate 

that occupies the minimum slot is rated best, and the further down from the minimum a 

candidate occurs, the less well-formed it is judged to be. In lexical decision tasks the 

candidate that occupies the minimum position in the chain-ordering is considered most 

seriously as a potential word, and is therefore associated with the slowest rejection times. 

The further down from the minimum a candidate occurs, the less seriously language users 

entertain the possibility that it might be a word, so that such candidates are associated 

with quicker rejection times. 

(iv) Independence from the candidate set. The results of this chapter all assumed 

the existence of a set of candidates to be compared. However, the origin of this candidate 

set never featured in any of the proofs. The information structure that EVAL imposes on 

the candidate set therefore does not depend on the origin of the candidate set. EVAL can 

compare and order any set of candidate forms.  

This result is also employed in the rest of the dissertation. We usually think of an 

OT grammar as comparing different output candidates for a single input – i.e. an input 

goes into GEN, and GEN then generates a set of candidate outputs for this input.  

However, the way in which EVAL works does not require the candidate set to originate 

in this manner. In particular, I argue that EVAL can compare candidates that are not 

morphologically related – that do not share the same input. GEN then generates a 

candidate set for several morphologically unrelated inputs, and we select subsets from 

these generated candidate sets to form a new set of candidates that is submitted to EVAL 
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for comparison (see Chapter 1 §1.2). A variable process does not always apply at the 

same rate in different contexts. In order to account for this, comparison across contexts is 

necessary, and I argue that this achieved by allowing EVAL to compare candidates from 

different inputs (from different contexts). 

Also when non-words are compared, whether in a well-formedness judgment task 

or in a lexical decision task, the candidates that are compared are not candidates 

generated by GEN for some input. In accounting for these kinds of phenomena I also rely 

on the fact that EVAL can compare any set of candidate forms. 
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Appendix A: Definitions 

(3) Constraints as relations between the candidate set and ù 

Let CON be the universal set of constraints, and K the set of candidates to be 

evaluated. Then, ∀C ∈ CON: 

 C: K → ù such that ∀ k ∈ K, C(k) =  number of violations of k in terms of C 

(4) Def. 1: Functions  

A relation R from A to B is a function iff: 

(a) the domain of R = A (i.e. every member of A is mapped onto some 

member of B), and 

(b) each element in A is mapped onto just one element in B (R is single 

valued). 

(9) Def. 2: The relation ≈C on K  

Let K be the candidate set to be evaluated by EVAL, and CON the set of 

constraints. 

Then, for all k1, k2 ∈ K, and for all C ∈ CON, let: 

 k1 ≈C k2    iff  C(k1) = C(k2). 

(11) Def. 3: An equivalence relation 

A binary relation R on some set is an equivalence relation on that set iff R is  

(i) reflexive, (ii) symmetric, and (iii) transitive. 

(13) Def. 4: Equivalence classes on K in terms of ≈C

 For all k1 ∈ K, ƒk1„C := {k2 ∈ K | k1 ≈C k2} 
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(15) Def. 5: Quotient set on K modulo ≈C

 K/C := {ƒk„C | k ∈ K} 

(17) Def. 6: The ordering relation ≤C on the set K/C 

 For all C ∈ CON and all ƒk1„C, ƒk2„C ∈ K/C: 

  ƒk1„C ≤C ƒk2„C iff C(k1) ≤ C(k2). 

(19) Def. 7: The ordering relation ≤C' on the set K 

 For all C ∈ CON and all k1, k2 ∈ K: 

  k1 ≤C' k2 iff C(k1) ≤ C(k2) 

(21) Def. 8: An order-embedding 

Let P and Q be ordered sets. A map ϕ: P → Q is said to be an order-embedding if 

x ≤ y in P iff ϕ(x) ≤ ϕ(y) in Q. 

(22) Def. 9: A mapping from 〈K/C, ≤C〉 to 〈K, ≤C'〉 

ψ:〈K/C, ≤C〉 → 〈K, ≤C'〉 such that: 

For all ƒkx„C ∈ K/C and for all ky ∈ ƒkx„C, ψ (ƒkx„C) = ky. 

(26) Def. 10: Definition of a chain 

 Let P be an ordered set. Then P is a chain iff for all x, y ∈ P, either x ≤ y or y ≤ x. 

(28) Def. 11: Minimum of an ordered set 

 Let P be an ordered set and Q ⊆ P. Then: 

 a ∈ Q is the minimum of Q iff a ≤ x for every x ∈ Q. 
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(30) Def. 12: A partition 

 A set P is said to be a partition on some set A iff: 

(a) P consists of non-empty subsets of A. 

 (b) The sets in P are exhaustive – each element of A is in some set in P. 

(c) The sets in P are disjoint – no two different sets in P have any element in 

common. 

(34) Def. 13: Cartesian product 

Let I be the set {1, 2, … , n}, the index set, and let H be a function with domain I. 

Then, for each i ∈ I, we have a set H(i). The Cartesian product of H(i) for all i ∈ I 

is defined as follows: 

Vi∈I H(i) := {f | f is a function with domain I and ∀i (i ∈ I →  f(i) ∈ H(i))} 

(35) Def. 14: Step 1 in combination process = Cartesian product between sets K/Ci

Let I be the set {1, 2, … , n}, the index set, such that ||C1 o C2 o … o Cn||.  

Let K/Ci be the quotient on K associated with Ci. We want the Cartesian product 

of all the quotient sets. We define this as follows: 

Vi∈I K/Ci := {f | f is a function with domain I and ∀i (i ∈ I → f(i) ∈ K/Ci)} 

The set Vi∈I K/Ci will be referred to as K/C×. 

(37) Def. 15: Lexicographic order 

Let Vi∈I H(i) be the set as defined in Def. 13 (34) above, and let 〈x1, x2, … ,  xn〉, 

〈y1, y2, … ,  yn〉 ∈ Vi∈I H(i). 

The lexicographic order on Vi∈I H(i) is defined as follows: 
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((37) continued) 

〈x1, x2, … ,  xn〉 ≤ 〈y1, y2, … ,  yn〉 iff: 

(i) For all i ≤ n, xi = yi     (then 〈x1, x2, … ,  xn〉 = 〈y1, y2, … ,  yn〉) 

    OR (ii)   ∃k such that: 

• ∀i (i  < k → xi = yi), and 

• xk < yk   (then 〈x1, x2, … ,  xn〉 < 〈y1, y2, … ,  yn〉) 

(38) Def. 16: Step 2 in the combination process = ordering K/C×  

Let Ci ∈ CON, with the ranking ||C1 o C2 o … o Cn||, and K/Ci the quotient set 

associated with constraint Ci (as defined in Def. 5 (15)). Let ƒxi„Ci, ƒyi„Ci ∈ K/Ci be 

the equivalence classes of candidates xi and yi in terms of constraint Ci (as defined 

in Def. 4 (13)). 

Let ≤Ci be the ordering that EVAL imposes on the candidate set in terms of 

constraint Ci (as defined in Def. 6 (17)).  

Let K/C× be the Cartesian product of K/Ci for all i ∈ I (as defined in Def. 14 (35)). 

Let 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉, 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉 ∈ K/C×.  

Then ≤×, the lexicographic order on K/C×, is defined as follows: 

〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ≤× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉 iff: 

(i) ∀i(i ≤ n → ƒxi„Ci =Ci ƒyi„Ci) 

(then 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 =× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉) 

      OR (ii) ∃k such that:  

• ∀i (i  < k → ƒxi„Ci =Ci ƒyi„Ci), and 

• ƒxk„Ck <Ck  ƒyk„Ck. 

(then 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 <× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉) 
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(42) Def. 17:    First half of step 3 in the combination process = Intersect 

Let K/C× be the set as defined in Def. 14 (35) above, and let 〈ƒx1„C1, ƒx2„C2 … 

ƒxn„Cn〉 ∈ K/C×. Then we define Intersect: K/C×   →  ℘(K) as follows: 

Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) is undefined if ƒx1„C1∩ƒx2„C2∩…∩ ƒxn„Cn = ∅, 

and  Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) = ƒx1„C1∩ƒx2„C2∩…∩ ƒxn„Cn otherwise. 

(43) Def. 18: Collecting the output of Intersect into one set 

 K/CCom:= {Z || ∃〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 ∈ K/C×, such that  

Z = Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) } 

(45) Def. 19: Second half of Step 3 in the combination process:  

     the ordering ≤Com on K/CCom. 

Let (ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩  ƒxn„Cn), (ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩  ƒyn„Cn)  ∈  K/CCom. 

Then 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉, 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉  ∈  K/C×. 

Then we define the order ≤Com on K/CCom as follows:   

(ƒx1„C1 ∩ ƒx2„C2 ∩ … ∩  ƒxn„Cn) ≤Com (ƒy1„C1 ∩ ƒy2„C2 ∩ … ∩  ƒyn„Cn) iff  

〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉  ≤× 〈ƒy1„C1, ƒy2„C2 … ƒyn„Cn〉. 

(47) Def. 20: Inverse 

Let A and B be two sets, and F: A→B a relation on A×B.  F can then be 

represented as set of ordered pairs,  F = {〈a1, b1〉, 〈a2, b2〉, …} with ai∈A and bi∈B. 

F -1: B → A, the inverse of F, is then a relation on B × A, and is defined as follows: 

F -1 := {〈b, a〉 | 〈a, b〉 ∈ F } 
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(48) Def. 21: The inverse of Intersect 

 Let K’ ⊆ K. Then we can define Intersect-1 as follows:  

Intersect-1: ℘(K) → K/C×: Intersect-1 (K’) = 〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉 iff 

Intersect(〈ƒx1„C1, ƒx2„C2 … ƒxn„Cn〉) = K’. 

(49) Def. 22: An order preserving mapping  

Let P and Q be ordered sets. A map ϕ: P → Q is said to order preserving if x ≤ y 

in P implies ϕ(x) ≤ ϕ(y) in Q. 

(53) Def. 23: Crucial constraints 

Let k1, k2 ∈ K, and let the grammar under consideration be ||C1 o C2 o … o Cn||. 

Then we define Crux1,2, the crucial constraint for k1 and k2, as follows: 

Crux1,2 = Ci such that Ci(k1) ≠ Ci(k2) and ¬∃j (j < i and Cj(k1) ≠ Cj(k2)). 

(54) Def. 24: Strictness of domination with reference to 〈K/CCom, ≤Com〉 

Let k1, k2 ∈ K, and K1, K2 ∈ K/CCom such that k1 ∈ K1 and k2 ∈ K2.  

Let ƒki„Cj be the equivalence class of ki ∈ K in terms of constraint Cj as defined in 

Def. 4 (13) above, and ≤Cj the ordering associated with this constraint as defined 

in Def. 6 (17) above. 

Let Crux1,2 be the crucial constraint as defined just above in Def. 23 (53), and 

≤Crux1,2 the ordering that EVAL imposes on the candidate set with reference to 

Crux1,2. 

Then: 

K1 <Com K2 iff ƒk1„Crux1,2 <Crux1,2 ƒk2„Crux1,2. 
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(60) Def. 25: ≈Com as a relation on K 

 Let the grammar under consideration be ||C1 o C2 o … o Cn||, and k1, k2 ∈ K. 

Then we define ≈Com as follows: 

 ≈Com ⊆ K × K such that k1 ≈Com k2 iff for all i ≤ n Ci(k1) = Ci(k2) 

 

Appendix B: Theorems and Lemmas 

(5) Theorem 1: Constraints as functions 

 All constraints are functions. 

(12) Theorem 2: ≈C as an equivalence relation 

For all C ∈ CON, ≈C is an equivalence relation on K. 

(24) Theorem 3: That ψ is an order-embedding 

 The mapping ψ as defined in Def. 9 (16) is an order-embedding. 

(27) Theorem 4: That ≤C defines a chain 

 The ordering that ≤C imposes on K/C is a chain. 

(29) Theorem 5: That 〈K/C, ≤C〉 has a minimum 

 The ordering ≤C always has a minimum in K/C. 

(31) Theorem 6: K/C as a partition on K 

  K/C is a partition on K. 
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(40) Lemma 1: That ≤× defines a chain 

 ≤× defines a chain on K/C×. 

(41) Lemma 2: That ≤× always has a minimum 

The ordering ≤× always has a minimum in K/C×. 

(50) Lemma 3: That Intersect-1 is order preserving 

 Intersect-1 is an order preserving mapping.  

(55) Theorem 7: Strictness of domination and 〈K/CCom, ≤Com〉 

 〈K/CCom, ≤Com〉 abides by strictness of domination. 

(57) Theorem 8:  That ≤Com defines a chain 

 The ordering that ≤Com imposes on K/CCom is a chain. 

(58) Theorem 9: That 〈K/CCom, ≤Com〉 always has a minimum 

 The ordering ≤Com always has a minimum in K/CCom. 

(59) Theorem 10: That K/CCom is a partition on K 

 K/CCom is a partition on K. 

(61) Theorem 11: That ≈Com is an equivalence relation 

 ≈Com is an equivalence relation on K. 
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(62) Theorem 12: The members of K/CCom can be fully defined in terms of ≈Com

Let K be the candidate set, K1 ∈ K/CCom and k1 ∈ K1. Then: 

(i) ∀k2 ∈ K1, k1 ≈Com k2, and 

(ii) ∀k3∈ K such that k1 ≈Com k3, k3∈ K1. 
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