
 37

2:

SPECIFYING THE FRAMEWORKS:

GENERATION VERSUS EVALUATION

 In 1.2, it was observed that both derivational and optimality frameworks spawn grammars

that describe a function from underlying forms to surface forms. In order to develop a formal

comparison of the two theoretical frameworks, we must specify how each constructs this

function so we can look for structural correlates between the two.

 As pointed out by Archangeli and Langendoen (1997:ix), there are two broad formal

strategies that inform these frameworks, generation and evaluation. Generation involves the use

of operations that modify (change or add to) given structures, evaluation involves measuring the

extent to which given structures comply or fail to comply with constraints. The core of the

derivational framework involves generation by a series of rules, the core of the optimality

framework involves evaluation by constraints which are ranked to resolve any conflicts. We shall

argue here that it will not do to compare Optimality-Theoretic constraint evaluation with the

work of constraints in rule systems, since constraint evaluation is an additional development to

the core devices of the derivational framework. Similarly, it will not do to compare rules with the

Generator function of Optimality Theory, since, as we will show, this function is superfluous

(despite its place in the popular conception of the structure of the theory). Rather, the essence of

the two frameworks lies in one strategy or the other - generation or evaluation – so it is the very

devices of generation and evaluation that a systematic formal comparison must compare.

 This chapter's orientation is decidedly formal, since introductions to the theories have

already been made. A formal approach is by nature highly powerful, forcing very basic properties

to be stated explicitly. Often, our formulations may specify things which those who work with

 38

the theories know intuitively. In other instances, they may clarify the systems in ways which

challenge popular views.

2.1 Generation in the Derivational Framework

 The derivational analyst formulates a system in which a surface form is determined from

the underlying form by a series of rule applications, each providing some mutation or

augmentation of structure. This is the generation strategy. In this section we review the constructs

of the derivational framework which derive the underlying-surface relation: derivational

sequences, rules, and rule ordering.

2.1.1 Derivational Sequences

 From a series of mutations or augmentations of structure by rules, a sequence of

representations builds up - a linguistic derivation, then, is a sequence. The derivations of all the

surface forms of an entire language form a class, and a generative grammar of the language

defines this class. This can be given the following simple algebraic outline (adapted from

Soames 1974:124 and Chomsky 1971:183-4)1:

(1) The class K of derivations in a grammar G is the class of finite sequences of representations

P1,...,Pn such that:

 (i) P1 is an underlying representation,

 (ii) Each pair �Pi,Pi+1� meets well-formedness requirements placed by G.

1The reference to work of such antiquity is a consequence of the peculiar history of generative grammar, since study
of the nature of rule application had its heyday in the 1960s and 1970s. Soames (1974) specifically addresses the
formalisation of derivational systems.

 39

 Since our concern is with how the relation between underliers and surface forms is

mediated, we do not now pursue any further the question of how they are set up by the analyst,

nor how they are to be interpreted in cognitive terms or otherwise. Since our inevitably limited

focus excludes these from inquiry, we merely assume a set, call it ’Un’, whose members are

precisely the underlying representations, and a set ’Su’ whose members are the surface

representations. To say that a form is an underlying form is to say that it belongs to ’Un’, to say it

is a surface form is to say that it belongs to ’Su’. The function specified by a grammar of the

derivational framework is a serial composition of elementary functions, the rules, combined into

a derivational sequence starting from the underlying form. The final member of that derivation is

the corresponding surface form predicted by the grammar.

(2) Let the underlying-surface relation contain pairs

 una : sua

 unb : sub

 unc : suc

 und : sud

 ...

Let P1,...,Pn be a derivation in K.

If unx = P1 for x � {a,b,c,d,...}, then Pn = sux.

The last member of a derivation is the surface counterpart of the underlying form at the

start of the derivation.

What (1) does is to characterise the working of the grammar while (2) reveals its result, the

determination of the surface from the underlier. The clear distinction of the working of the

grammar from its output specifically characterises the classical generativist position: that the

 40

derivational grammar is blind to the surface it happens to traverse towards, and thereby offers an

explanation of the facts at the surface.

 We now turn our attention to rules, expressing the special relations between the

successive structures of the derivation.

2.1.2 What Is A Rule?

 Within a derivation P1,P2,P3,...,Pn, each successive ordered pair of representations �P1,P2�,

�P2,P3�, �P3,P4�, etc. – that is, each successive step of the derivation – constitutes the application

of some rule. Thus, for the Sarcee forms in (3),

(3) a. dìní 'it makes a sound'

 b. dìní -i with relative suffix

the underlying form is / dìní ������������	�
������������������	-initial suffix (3b) and

corroborated by the fact that the speaker still feels a ’t’ at the end of the word (3a) even though it

is objectively absent from speech (Sapir 1933). Then, the derivation of (3a) contains the ordered

pair, � dìní ��
ìní �. Here, a rule of word-final consonant deletion has applied. A rule R is said to

apply in a derivation P1,...,Pn if there exists some i such that �Pi,Pi+1� is a member of R. Thus, a

rule defines a set of ordered pairs that can appear in the derivations of a language. A set of

ordered pairs is a relation (Partee, ter Meulen and Wall 1990:29), so a rule is a relation.

 As a relation, a rule has a domain - the set of structures from which the rule maps, and a

range - the set of structures to which it maps. A rule of final consonant deletion has the domain

'structures with final consonants' and the range 'structures with no final consonants'. The rule

only adds a new structure to the derivational sequence when the previous structure falls within its

 41

domain.2 The domain and range, however, are not usually sufficient to define a relation,3 and this

is true of phonological rules. The range of final consonant deletion is ’structures with no final

consonants', but this allows all sorts of possible outputs from / dìní ��������������

(4) a. / dìní / d. / dì/

 b. / dìní ���� e. / pélí /

 c. / dìní ��� f. / víná /

Any form ending in a vowel falls within the range of the rule-relation, not just the desired form

/ dìní / (4a). In order to properly characterise a phonological rule, then alongside the specification

of the domain, or structural description to which the rule applies, we replace the range

condition with a specification of the structural change by which the second structure differs

from the first. Thus word-final consonant deletion is formulated as follows:

(5) a. C��/_#

 b. Structural Description: Ci#

 c. Structural Change: Ci���

The output of the rule must differ from the input by the absence of the particular final consonant

that is identified by the structural description. We represent this by co-indexing the consonant

2A qualification needs to be made for rules which insert structure, whether a feature or an association relation or
syllable structure. These rules have an ‘implicational’ format (Roca 1994:46), e.g., [+nasal]�[-continuant] rather
than a ‘transformational’ format [+continuant]�[-continuant]. When a structure meets the domain condition of an
implicational rule [+nasal]�[-continuant], the material to be inserted may already be present ([+nasal,-continuant]).
In that case, the rule is said to apply vacuously, which would generate an identity mapping.

3To see this, consider a relation between the letters of the English alphabet (the domain) and the numbers 1 to 26 (the
range). Now, what is 'a' mapped to? If we wish to adopt the conventional order and identify 'a' with '1', for example,
we must additionally specify this convention, stating which letters are related to which numbers.

 42

mentioned in the structural description (5b) with the consonant given in the structural change

(5c): they are crucially one and the same. Such a definition now rules out augmenting the

segmental string with a vowel in application of the rule as in (4b,c); rather, the rule states that the

t’ must be taken out. However, we also require that while the final consonant is deleted, other

parts of the structure are not permitted to change at random, leading to forms like (4d) or (4e) or

(4f). Pieces of structure must either exhibit the structural change (s.c.) of a rule, or else identity

(id.), as in (6). This halts the absurdity of random variation.

(6) d ì n í
 | | | | ¦
 d ì n í �

 id. id. id. id. s.c.

 It remains possible for several structural changes to apply at once, by permitting two, or

more, rule applications simultaneously within a single derivational step (and all other elements

remaining identical). One question is what happens when the structural description of a single

rule is met several times in a word. This can happen with rules applying to word-medial

positions, such as consonant assimilations in words with several clusters, or vowel lengthening in

words with multiple syllables. Chomsky and Halle (1968:344) considered that structural changes

took place at all places where the structural description is met in a single step, but Johnson

(1972) argued that it was necessary to separate them, applying structural changes singly at

successive steps in the derivational sequence for positions from left to right or right to left in the

word. The application of two distinct rules at the same step has also been countenanced in some

proposals (Koutsoudas, Sanders and Noll 1974, Hyman 1993). In autosegmental phonology, it

has remained ambiguous whether the spreading and delinking of features depicted within a single

diagram apply one after the other or simultaneously (Kenstowicz 1994:103). We give the

 43

example of voicing assimilation of obstruents to nasals, where [+voice] spreads from the nasal to

the obstruent and any [-voice] value of the obstruent delinks and deletes.

(7) Spreading and delinking: together, or in some sequence?

 {+sonorant} {-sonorant}
 / \ \
 [+nasal] {laryngeal} {laryngeal}
 \ ‡
 [+voice] [-voice]

If the theory allows only one structural change at each step, then each structure in the sequence is

uniquely determined by the rule applying at that step, and since uniquely determined output is the

defining characteristic of a function (Partee, ter Meulen and Wall 1990:30), rules are functions.

Otherwise, rules are a less stringent kind of relation, each failing to uniquely determine its

outcome, and the theory requires an additional formal operation which takes all the rules that

apply at one step and produces from them a single ordered pair containing all the structural

changes.

2.1.3 Rule Ordering and Regular Sequencing Constraints

 The next issue is the sequence in which rules apply. If one rule Ra always applies before

another rule Rb in some language, because the mapping by Ra from one structure to the next

occurs at an earlier point in the sequence than the mapping by Rb from one structure to the next,

then the following statement holds over the class of well-formed derivations:

(8) For all derivations P1,P2,P3,...,Pn : �i�j [(�Pi,Pi+1��Ra & �Pj,Pj+1��Rb) � i<j]

Whenever the two rules Ra and Rb both apply in a derivation, Ra always applies before

Rb.

 44

This captures the regular sequencing of two rules.4 The regular sequencing of Rb with a third rule

Rc would be captured by a similar well-formedness constraint:

(9) For all derivations P1,P2,P3,...,Pn : �i�j [(�Pi,Pi+1��Rb & �Pj,Pj+1��Rc) � i<j]

Whenever the two rules Rb and Rc both apply in a derivation, Rb always applies before Rc.

Now, taking (8) and (9), it is not immediately possible to deduce (10), which regularises the

sequential application of Ra before Rc.

(10) For all derivations P1,P2,P3,...,Pn : �i�j [(�Pi,Pi+1��Ra & �Pj,Pj+1��Rc) � i<j]

Whenever the two rules Ra and Rc both apply in a derivation, Ra always applies before Rc.

The argument is as follows. In a derivation where all three rules apply, they must of course apply

in the sequence Ra before Rb before Rc. But in a derivation where only Ra and Rc apply, but not

Rb, neither (8) nor (9) says anything about the sequence in which they come (they are both

vacuously true, by falsity of antecedent). So there is no reason why Rc may not apply before Ra,

contrary to (10).

 So regular sequencing constraints are not themselves transitive: Ra always precedes Rb

and Rb always precedes Rc does not imply Ra always precedes Rc, though they are irreflexive

(rules do not apply before themselves) and asymmetric (if Ra always applies before Rb, then Rb

does not apply before Ra). Instead, (10) is achieved in a stronger theory in which rules are

4I have avoided the expression "order of application" and instead adopted the expression “regular sequencing”. This
anticipates chapter five in which it is observed that derivational sequences are not necessarily orderable.

 45

ordered, as in (11), because ordering relations are by definition irreflexive, asymmetric and

transitive.

(11) Let < be an ordering on rules.5

 If S < T, then for all derivations P1,P2,P3,...,Pn ,

 �i�j [(�Pi,Pi+1��S & �Pj,Pj+1��T) � i<j]

Rules are ordered in a list, and each pair of rules always applies in the sequence given by

their order.

Now in the rule ordering theory we have that if Ra < Rb, and Rb < Rc then by transitivity Ra < Rc.

Then, by (11), all three regular sequencing constraints (8), (9) and (10) will be imposed.6

 In the only comparable study of the formal properties of derivations, Soames (1974) notes

that transitivity is required, but overestimates the response that is needed. In his terminology, an

ordering relation is not necessarily transitive; only a linear ordering is transitive. Thus, he

presents a theory like (11): “if T1 and T2 are transformations, then the statement that T1 is

ordered before T2 imposes the following constraint: �i�j [(�Pi,Pi+1��T1 & �Pj,Pj+1��T2) �

i<j]” (Soames 1974:130), but rejects it because “this characterisation does not require that the

ordering [sic] relation holding between transformations be transitive” and “if it is the case that

whenever grammars impose orderings, the orderings imposed are linear [and hence, transitive -

RN], then we want a theory that is not just compatible with this result, but which predicts it.”

(Soames 1974:131). Setting things straight, we do not want a theory which predicts linear order:

linear order IS the theory. As Pullum (1979:25) points out, Soames need only add a statement of

5The notation S < T is standard in mathematics for "S precedes T", even though the opposite symbol ">" is more
familiar in linguistics from historical derivations, e.g. *vin > vino "vin is the antecedent of vino".

6 (11) would need to be modified for theories of cyclic rule application, since the rules apply in sequence within one
cycle, but the rules may apply again on the next cycle.

 46

transitivity. Instead, Soames (1974:132) resorts to the more elaborate response of assigning

numerical indices to transformations, ensuring linear order because the indices are “drawn from a

linearly ordered system”. The natural numbers, to be sure, are linearly ordered, and provide a

perspicuous notation (which I capitalise on), but they import a whole raft of other properties that

have interested mathematicians for centuries but which have no use in derivational systems: for

example, numbers are unbounded, so their incorporation implies that a grammar may contain an

infinite number of rules, R1,R2,R3,R4,... , and that grammars with a finite set of rules (i.e. all

real grammars) intrinsically stop short of the full capacity available. All we actually want is

linear order.

 In this section, we have recognised that rule-based grammars depend on an ordering

relation, which is used to impose natural restrictions on the regular sequencing of rules in

derivations. The overall structure of the framework is summarised in the next section.

2.1.4 Summary: Rule-Based Grammar

 The three interrelated levels in (12) represent the derivational framework:

(12) Set of Ordered Rules
 |
 Class of Derivational Sequences
 |
 Underlying Representation - Surface Representation Pairs

The 'bottom' level has the list of underlying forms paired with the surface forms which realise

them. These forms are the first and last members of the derivations, which themselves reside, as

a class (as in 2.1.1), on the middle level. In the derivations, the determination of surface forms

from underlying forms is decomposed into a series of ordered pairs whereby each successive

form is mapped from its predecessor. What counts as a well-formed derivational sequence is

 47

determined from the rules and their ordering at the top level. Each ordered pair in the

derivational sequence must constitute the application of some rule (as in 2.1.2) and the ordering

of rules imposes constraints of regular sequencing on the application of rules (as in 2.1.3).7 In

table (13) below, we recall these formulations.

(13)

Rule System Effect of Rule System on Derivations

A set of rules. In a derivation P1,...,Pn in K, each pair of

successive representions constitutes the

application of some rule, i.e. �Pi,Pi+1��R for

some rule R.

A (partial or total) ordering on rules:

that is, a relation < between rules that

complies with axioms of irreflexivity,

asymmetry, transitivity.

Rule ordering statements S < T impose

constraints on derivations P1,...,Pn of the form

�i�j [(�Pi,Pi+1��S & �Pj,Pj+1��T) � i<j].

Bromberger and Halle (1989) also cite other conventions used in the construction of derivations

in phonology: the affiliation of rules to different strata, cyclic application of some rules over

successively more inclusive morphological domains. These are substantial issues in their own

right, and purely for simplicity’s sake we delimit our formal enquiry to a single stratum of rules

which all apply to the same morphosyntactic domain. This allows us to focus on comparing the

essential formal system of rules and derivations with the optimality-theoretic alternative.

7The well-formedness of derivations also depends on the requirement that obligatory rules apply whenever a member
of the sequence falls within their domain unless ruled out by the regular sequencing constraints and/or possibly other
derivational constraints.

 48

2.2 Evaluation in the Derivational Framework

 Some work in generative phonology has proposed that the well-formedness of the steps in

derivational sequences (see (1)) is decided not only by the basic system of ordered rules, but in

part by constraints against which the structures produced by rules are measured. Here, we discuss

the formalisation of constraining derivations this way, and show that the full complexity of this

approach is greater than has been acknowledged, departing from the basic generation system.

2.2.1 Blocking Constraints

 One example is from Modern Hebrew (McCarthy 1986). A rule of schwa deletion which

fails to apply just in case the immediately adjacent consonants are identical. Form (14a)

illustrates the deletion, which does not obtain in (14b) when the schwa is flanked by two

identical consonants.

(14) a. *������, ����� ’they tied’

 b. ���	�
�
��, *���	�

�� ’I will pray’

We would want a rule somewhat like (15a), whose structural description contains the condition

that the flanking consonants must differ in some feature or other.

(15) a. ���/VC1__C2V (C1�C2)

 b. ���/VC__CV

 c. *C1C2 where C1	C2

 49

An alternative is to omit the condition that the neighbouring consonants differ, as in (15b), but

concomitantly posit a constraint (15c) that prohibits identical adjacent consonants, which will

block the application of (15b) where necessary. This constraint is the Obligatory Contour

Principle (OCP). One can think of offending structures as being ruled out by the evaluation of a

tentative rule application, accepted into the derivation depending strictly on satisfaction by the

constraint (denoted in (16) by a tick
�or cross X).

(16)

 ������� ���	�
�
��

 ?��

OCP

 ?��

OCP

�������
� � ���	�

�� X

A simple way of formalising constraints of this kind might be as in (17a): a constraint C defines a

set of structures and no structure outside this set is allowed in a derivation. This would even

require that underlying forms, as the first members of derivational sequences, must satisfy C.

However, it has been proposed that derivational constraints are more selective, blocking only

some rules (Kisseberth 1970a, Archangeli and Pulleyblank 1994, Idsardi 1997). The affected

rule(s) may be named in the requirement on derivations as in (17b).

(17) Let P1,...,Pn be any derivation in K. Let i,j range over the subscripts 1 to n.

 a. �i[Pi�C]

 All structures in the derivation must satisfy constraint C.

 50

 b. �i[�Pi,Pi+1��R � Pi+1�C]

A derivation may contain an application of the rule R provided the resulting

structure satisfies constraint C.

c. Applied to Modern Hebrew: a derivation may contain the rule of interconsonantal

schwa deletion provided the outcome has no adjacent identical consonants.

 In a similar example with a new twist, a vowel deletion rule in the Amerindian language

Tonkawa applies in the environment VC__CV. This means that it fails just in case it would

create clusters of three consonants. Kenstowicz (1994:527) offers two versions of the

derivational constraint affecting this rule:

(18) a. V�� / X__Y

 Condition: block if result violates constraint *CCC

 b. V�� / �__��

 Condition: block if result is not exhaustively syllabifiable

Version (18b) is intended to go beyond the segmental string and take account of contemporary

syllable theory. Thus, the bias against clusters of three consonants is to be explained in turn by

two constraints: (i) a general constraint against two consonants in either syllable onset or syllable

coda - single onset and coda consonants lead to maximum clusters of two consonants word-

medially: .CVC.CVC.; (ii) a requirement that all segments be licensed by (or have a legitimate

place in) syllable structure - so no consonants between syllables, *.CVC.<C>.CVC. .

 The complexity of this evaluation has not been made formally explicit, however. It cannot

be done merely by testing the output of the rule. For, if we block the rule whenever it leaves an

 51

unsyllabified consonant, we would block every time - correctly (19, left) and incorrectly,

indicated by � (19, right):

(19)

CVC.CV.CV CV.CV.CV

?� Deletion

Licensing

 ?� Deletion

Licensing

CVC.<C>.CV X CV.<C>.CV �X

In fact, the rule is blocked if it would create a string which is not merely unsyllabified, but

unsyllabifiable, a stronger condition that must be evaluated by taking into account further

syllabification rules also, as in (20). Since the onset of the following syllable and the coda of the

preceding syllable are both occupied, leaving no way to syllabify the consonant, then the original

deletion rule is blocked:

(20)

VC.CV.CV

?� Deletion

Licensing

VC.<C>.CV

?� Onset Syllabification

does not apply (*VC.CCV)

?� Coda Syllabification

does not apply (*VCC.CV) X

 52

In contrast, CV.CV.CV will be reduced to CV.<C>.CV then CVC.CV by coda syllabification,

and since the consonant is eventually licensed, no overzealous blocking will result.

 Thus, while Kenstowicz’s (1994:527) condition of unsyllabifiability is both accurate and

true to contemporary syllable structure theory, a new degree - even dimension - of complexity

has been added to the derivational system. We started out with the notion that rule application

could be restricted by derivational constraints that prevent some outputs, keeping a sense of

integrity to the particular derivational step as originally set out in (1ii) above and reiterated by

Chomsky (1998) as an imperative of Minimalist theory. Now we have a scenario in (20) of

evaluating not the outcome of the rule itself, but the outcome following a number of rules - this

rule and the rules of syllabification. A new requirement on derivations, significantly more

complex than the earlier formalisation of derivational constraints in (17b), is involved.8 Yet this

approach, underformalised and more complex than hitherto acknowledged, is not strictly

essential. In principle, all restrictions on the application of rules can be put in the structural

description which specifies the domain of the rule mapping. Indeed, Calabrese (1995) proposes

that blocking reduces to precisely this, and applies it at least for a simple case. In the Tonkawa

rule here, the rule needs to contain the condition that the syllable containing the vowel to be

deleted (V) and the preceding syllable are both open syllables: ...CV.CV.CV... This condition is

apt in its reference to syllable structure, without resorting to a complex evaluating mechanism.

8In order to maintain evaluation at the original step, it might be said to arise in a different way: all consequences of
constraints are also constraints, so *CCC is a constraint because it follows from exhaustive syllabification and a ban
on two consonants in onsets or codas. However, for structures where syllabification principles are in force, lack of
CCC is simply an epiphenomenon, but *CCC as a constraint in its own right affects structures that syllabification
principles do not (structures at derivational stages prior to their syllabification). By this very strength, *CCC is more
than a logical consequence, it is an extension. Hence, the proposed grammar contains an enriched, self-extending
system of derivational constraints, a development in complexity alternative to the evaluation in the text.

 53

2.2.2 Constraints Triggering Repairs

 In addition to the blocking facility, another function has been attributed to constraint

statements - that of triggering repair-operations whose output satisfies the constraint violated by

the input. For example, concatenations of morphemes can bring together material which violates

a constraint statement. However, this appeal to constraints is essentially a re-conceptualisation of

the structural description of a rule.

 Yawelmani Yokuts employs the rule in (21) (Kisseberth 1970a):

(21) ��V / C__CC

Given this rule, one can identify the notions of constraint and repair strategy. One might say that

the presence of CCC (or perhaps unsyllabifiable <C>) in some structure in a derivation is

evaluated negatively and is subject to an operation to repair it. The structural change of the rule is

the insertion of a V between first and second of the three consonants, a site denoted in (22) by

��� . Or, one might say, the vowel insertion is the repair operation to avert a *CCC violation.

(22) Structural Description: C1C2C3 ("Constraint: *CCC")

 Structural Change: ����V ("Repair: ��V")

Note, however, in (22) that the insertion of V cannot occur just anywhere in the word, it must be

stated where in the configuration CCC it is employed - between the first and second consonants.

The structural change of a rule crucially depends on the structural description for its

intelligibility. Because of this, any additional independent constraint statement *CCC in the

language is redundant. Myers (1991) makes the same argument with examples of rules of

English. Constraints-as-triggers must be none other than the structural descriptions of rules, and

 54

repairs none other than structural changes, which are meaningless without being indexed to a

structural description.

 We briefly consider a couple of rejoinders to this. First, a putative advantage of appealing

to constraints is that both effects of a constraint - triggering repairs and blocking other rules -

may occur in a language. For example, Yawelmani Yokuts both repairs and blocks CCC

sequences. Or the same constraint may block in one language and trigger repairs in another, such

as the OCP (Yip 1988, Myers 1997a).9 But in a derivational theory based on rules we must re-

interpret the informal notion that constraints may both repair and block by saying that one

configuration of phonological structure may be present both as the structural description of a rule

and as a derivational constraint on other rules.

 Second, Goldsmith (1990:318ff, 1993) attempts to generalise the blocking-and-triggering

approach with the proposal that phonological rules apply if, and only if, their effect is to increase

’harmony’ (i.e. increase satisfaction of constraints). In Yokuts, one might attempt to reduce the

epenthesis rule (21) to a constraint *CCC (or *<C>) and the simple rule ��V, which can break

up clusters in order to increase harmony with respect to *CCC. However, we still need to

determine where the vowel goes: it could either go at C_CC or CC_C. If rules apply if and only if

they would increase harmony, then we require the presence of a further constraint which deems

that CV.CVC.C... is an improvement in harmony, but CVC.CV.C... is not. The problem is that

both syllable patterns exist in the language: ����� ���� ‘removes’; wag.ci.wis ‘act of dividing’.

There being no constraint against either pattern in the language, harmony fails to distinguish

between the two possible epenthesis sites. We must still index vowel insertion to the right

position in the structure, which is what the rule (22) achieves.

9The supposed dual effect of constraints in blocking and repair is also a problematic ambiguity, as observed by
Prince and Smolensky (1993:207) and Bird (1995:12-14): will a given constraint block the output of a rule, or will it
admit the rule’s application but then trigger a repair of its output? Apparently this must be resolved on a case-by-case
basis. This has led researchers either to abandon blocking-constraints (Myers 1991, Calabrese 1995), or to abandon
rules (Scobbie 1991, Prince and Smolensky 1993).

 55

 In conclusion, constraints are an additional facility imposed on the essential system of

generation by rules. Although the appeal to constraints is empirically motivated, we have found

that the supposed blocking and triggering effects are underformalised, and that the technical

difficulties encountered are overcome by reverting to rules.10 This does not motivate a

meaningful formal comparison between these constraints and the constraints in the optimality

framework. Rather, rules and their effects must be compared with the optimality framework’s

constraints and their effects.

 Having reviewed the appropriate specification of the derivational framework in 2.1 and

2.2, we move on to the optimality framework.

2.3 Generation in the Optimality Framework

 Just as the use of constraints is a formally non-essential extension to the basic generation

system of the derivational framework, we make the complementary but innovative claim that

generation is eliminable from the evaluation system of the optimality framework.11 Surface

phonological representations are optimal among all possible representations defined by the

theory of phonological representation, not some set of forms generated by mutations to the

underlying representation.

10Constraint thinking can also be seen as antithetical to the explanatory intentions of the generation system set out in
2.1.1. For if the constraints which act on derivations are motivated by phonotactic patterns of the language
(Sommerstein 1974, Singh 1987, Goldsmith 1993), then the derivation does not explain the surface facts but is itself
driven by them (Scobbie 1991).

11This proposal was given to the 1997 Spring meeting of the Linguistic Association of Great Britain, and appears in
Norton (1998). I am grateful to the LAGB audience and the editor of the volume for their comments.

 56

2.3.1 Is Optimality Theory Derivational?

 The structure of optimality-theoretic grammar given in the seminal texts (Prince and

Smolensky 1993, McCarthy and Prince 1993a,1993b,1994) and maintained since (Kager 1999,

McCarthy 2002) goes as in (23), where from each underlying form we generate a set of structures

as candidates for the realisation of the form. This function is labelled ’GEN’, short for ’generator’.

This is followed up by an evaluation function ’EVAL’ which assesses the relative adherence of

candidates to a hierarchy of constraints, whereby one candidate is delivered up as optimal.12

(23) GEN (in) � { out1, out2, ... }

 EVAL ({ out1, out2, ... }) � {outk}

This gives us a theory which derives an output from an input. The derivational perspective is

suggestive of a computation of Gen and Eval (Ellison 1994), and suggests the possibility of

extending the structure of the theory by re-applying the Gen-Eval combination in successive

steps, either open-endedly (Prince and Smolensky 1993:4-5, McCarthy 2000), or a minimal

number of times (Rubach 2000). In rule-based derivations, structures are generated one from the

other in series, (24a). Prince and Smolensky (1993) developed the alternative in (24b) whereby

several structures are generated together.

(24) a. Serial Generation b. Multiple Generation c. No Generation

 � � � �
 ����������� ������� ???
 � � � �

12The seminal texts say that Eval "comparatively evaluates", "rates", "imposes an order on" the forms input to it,
though their schematic representation, repeated here, shows a filter which outputs a single form rather than an
ordering of forms.

 57

 The following sections argue that Optimality Theory has reached, without acknowledgement, a

stage where generation of structure from structure plays no part at all (24c), and the grammar is

purely an evaluative filter. While this requires abandonment of the popular conception of the

theory, the result is a more explanatory system.

2.3.2 How Are Candidates Admitted?

 To give concrete motivation to the discussion, a tableau is selected from the literature

(Myers 1997a, 1997b) concerning some tone alternations in Shona. The brief data in (25) show

that the high tone realised on the vowels of the word for ’knife’ is lost when the word follows the

copula proclitic, an [i]-vowel itself with a high tone.

(25) a. ����� ’knife’

 b. ������� ’it is a knife’

For the tableau analysis in (26), the concatenated input form comes with both high tones

associated to their vowels. The constraints used are defined in (27). However, as candidate (26a),

this form violates the OCP which prohibits adjacent identical elements. Candidate (b), for which

the second high tone is absent, satisfies the OCP. It turns out that candidate (b) is better than a

number of other candidates (c,d&e), and is passed as optimal. This predicts the surface form

(25b) given above.

 58

(26)

Input: H H

 | / \

 i banga

OCP

PARSE(T)

LEFT-ANCH

MAX-IO(T)

MAX-IO(A)

a. H H

 | / \

 i banga

*!

�b. H

 |

 i banga

*

**

c. H H

 / \

 i banga

*!

*

d. H H

 | |

 i banga

*!

*

e. H

 / \

 i banga

*!

*

**

(27) OCP Identical tones on adjacent tone-bearing units are prohibited.

 PARSE(T) A tone must be associated with a tone bearer.

 LEFT-ANCH If an output syllable � bears a tone, then � is the leftmost

 syllable in a tone span if and only if its input correspondent is

 the leftmost syllable in a tone span.

 MAX-IO(T) Every tone in the input has a correspondent in the output.

 MAX-IO(A) Every association relation in the input has a correspondent in

 the output.

 Ranking: OCP, PARSE(T), LEFT-ANCH >> MAX-IO(T) >> MAX-IO(A)

 59

Without pausing to examine the details of the rejection of the other candidates, we immediately

raise a different point. What about the forms in (28) as candidates?

(28) a. H H b. H nga

 | | / \

 i banga i ba H

Candidates are typically admitted onto linguists’ tableaux if they are plausible realisations and

differ in crucial and informative ways from the selected one. In order to verify that a form is

optimal, it is sufficient to show that alternatives which avoid its violations result only in worse

ones (the Cancellation/Domination Lemma, Prince and Smolensky 1993). If, in order to avoid

the MAX-IO(T) violation of candidate (b), we consider a candidate for which the second tone is

retained as a floating tone, we will find that it does indeed fatally violate PARSE(T) as well as

some other constraints. But this is the structure (28a). In principle, however, a large and

potentially infinite quantity of candidates are produced by Gen. Myers (1997a) happened to omit

candidate (28a,b), just as he also omitted the structure known as the Eiffel Tower, but are these

admitted in principle?

 Fortunately Myers is explicit about Gen. He assumes that Gen produces candidates from

the input by freely employing optional, unordered operations that include insertion, deletion,

linking and delinking of elements (Myers 1997a). (28a) is indeed arrived at by delinking and

deleting the second tone, so is a candidate in principle. The formal monster in (28b), and the

Eiffel Tower, are not produced by such operations. However, neither the Eiffel Tower not (28b)

actually look like phonological forms. Is it possible to come up with other structures that are

phonologically interpretable (unlike (28b) and the Eiffel Tower), but will still not be produced as

candidates? Despite the received picture of OT grammar in (23), if Gen plays no decisive role

 60

and is merely in the background, then the statement that candidates are ’provided by Gen’ lacks

serious theoretical content.

2.3.3 The Theoretical Role of Gen

 Gen is described by its creators as a function, with the qualities explained in (29). Let us

then examine its nature as a function.

(29)

a."Gen consists of very broad principles of linguistic form, essentially limited to those that define the

representational primitives and their most basic modes of combination." (McCarthy and Prince 1994:337)

b."Gen contains information about the representational primitives and their universally irrevocable relations."

(Prince and Smolensky 1993:4)

c."Gen... generates for any given input a large space of candidate analyses by freely exercising the basic structural

resources of the representational theory." (Prince and Smolensky 1993:5)

From (29a&b) particularly, it appears that principles of linguistic structure are intrinsic to what

Gen is. Thus, Gen produces phonological structures, but in doing so might be understood as

actually defining phonological structure, generatively, starting from some initial structures. If one

asks the question of what constitutes a phonological structure, the answer will be:

� Any structure generatable from an input structure by Gen, and any input structure itself, is a

phonological structure.

This faces the problem that, although the structure known as the Eiffel Tower cannot be

generated from a phonologically plausible input, there seems nothing to stop the postulation of

 61

the Eiffel Tower, or (28b), as an input, and hence, by definition, as a phonological structure. And

if we have (28b) as an input, we will have variations of this monster delivered by Gen as

candidate outputs. However, there is another answer to what constitutes a phonological structure

which is more principled, not dependent on some contingent input structures. This is an

axiomatic definition:

� Any object consisting of phonological primitives (features, prosodic units) related to each

other by some basic principles of permissible combination is a phonological structure.

This excludes the Eiffel Tower, and, with a little more work, (28b), but would be expected to

admit all the input and output forms on tableau (26), and so on.13

 To confirm the primacy of the latter definition, we refer to the basic mathematical theory

of functions (Partee, ter Meulen and Wall 1990:30ff). A function is a set of ordered �a,b� whose

left and right members are taken from two sets A and B, such that the right members are uniquely

determined from the left members. Prince and Smolensky (1993:4) tell us that "each input is

associated with a candidate set of possible analyses by the function Gen". So for Gen, the left

members are the input structures and the right members are the candidate sets, and each input is

uniquely associated with one particular collection of candidates. But these entities – inputs,

candidate sets – rest on there being a pre-defined set of phonological structures. The situation is

as in (30). First, the representational theory specifies what phonological structures may contain,

which defines the set of possible phonological structures P (an explicit formulation is in Bird

1995). Gen is a function from structures (members of P) to sets of structures (members of the set

of subsets of P, or power set of P). In each language a finite subset of these structures are the

13Quote (29c) seems closer to this approach, for it recognises a "representational theory" whose resources Gen must
supposedly draw on, and which must therefore be distinct from Gen.

 62

underlying forms, the set Un. The restriction of Gen to Un gives us the candidate sets from which

the grammatical forms of that language are selected.

(30) Some Entities in the Theory

 P the set of possible phonological structures

 Gen a function from P to the power set of P

 e.g. pk � {p1,p2,p3,....} where the pi are phonological structures

 Un a finite subset of P --- the set of underlying structures

 Gen|Un the restriction of Gen to Un – which supplies a candidate set for each underlying

form

This brings out the theoretical claim that Gen embodies: the candidate set is a function of the

underlying representation; each input determines which candidate outputs are in and which are

out. One input form has one candidate set, another input form has another. We now show that

this claim has effectively been abandoned.

 The admission of candidates is guided by the principle of Inclusiveness:

(31) Inclusiveness (McCarthy and Prince 1994:336)

The constraint hierarchy evaluates a set of candidate analyses that are admitted by very

general considerations of structural well-formedness.

The intention is that associated with an input is not just one possible derived form, but very many

structures varying from the input in very general ways. McCarthy and Prince (1994,1995) build

on the formative work of Prince and Smolensky (1993) by liberalising the generation of

candidates. Epenthesis sites may be generated in Prince and Smolensky (1993), but McCarthy

 63

and Prince (1994) also propose that the segment structures of epenthesis also be generated. They

justify this using Makassarese, as reproduced in (32), where epenthesis in coda position is

constrained by the Makassarese restriction that admits only glottals stops and velar nasals in

codas. Epenthetic segment structures are evaluated against the Coda Condition of Makassarese if

they are generated. This condition and other interacting constraints are stated in (33).

(32) Makassarese (McCarthy and Prince 1994:336)

 /jamal/ CODA-COND ALIGNR FINAL-C MSEG NO-NAS

�jamal | ��� * **

 jamal |���� * ** *!

 jamal | at *! * **

(33) CODA-COND Codas may only contain � or �.

 ALIGNR Align the right edge of the stem with the right edge of a

 syllable.

 FINAL-C Words must end in a consonant.

 MSEG Segments must be morphologically sponsored.

 NO-NAS Segments must not be +nasal.

 In the opposite case to epenthesis, phonetic absence is provided for in Prince and

Smolensky (1993) by failure to parse input segments into syllable structure, but could be

captured if input segmental structures are permitted to be absent from candidate outputs. This is

advocated by McCarthy and Prince (1995:268), who point out that it avoids the problem of

having to specify for an output constraint whether it refers to all elements or only the parsed

 64

elements, since they note that both kinds have been tried in the literature. For example, will the

OCP prohibit any adjacent, identical elements in a language or only adjacent identical, parsed

elements?14

 Thus we have that candidates may have feature structure that is not present in the input,

and they may lack features that are in the input. If these considerations are fully general, as the

Inclusiveness principle suggests, then the logical result is that candidate structure varies from the

input structure without limit, and Gen admits any, and hence every, possible phonological

structure as a candidate, every time (34). This is Inclusiveness at its logical extreme. Whereas a

rule generates a new form that differs from its predecessor in a specific and interesting way, Gen

generates forms that differ from its input in literally no particular or crucial way.

(34) Gen: � ina, P �, � inb, P �, � inc, P �,

 Gen maps every input back to the whole set P.

Gen is now a problematic item to retain in a theory, for it is now unrestrictive: nothing is ever

crucially excluded. Moreover, Gen is uninformative: a different input never has a different

candidate set; every input is always mapped to the same thing, ad nauseam. And Gen is

redundant: what it produces (ad nauseam) is a set that is already known and independently

specified. One can simply state – for all cases – that the possible candidate outputs are the

members of P: this doesn’t need to be re-derived over and over from every input.

 Summarising this section, we have that: (i) Gen is a function; (ii) Gen does not define

phonological structure, but instead maps structures to structures and thus itself requires an

independent definition of phonological structure; (iii) Gen would be of substance as a function if

14As pointed out by Idsardi (1998), however, the parsed/unparsed element distinction and the constraint PARSE is
still necessary in order to require prosodic structure at all.

 65

its outputs differed in useful ways depending on its input, but they do not; (iv) the optimal form

is in all cases one of the set of all possible phonological structures, not one of a set that depends

on the particular input at hand.

2.3.4 Maintaining Accountability To The Input

 If we remove Gen from the general structure of optimality theory as in (35), however, it is

not clear how the optimal output relates to the input. There must be some accountability to the

input, without which all words would turn out the same (Chomsky 1995:224) – the one optimal

member of P.15

(35) EVAL (P) � {outk}

Accountability to the input is provided by the Correspondence Theory of relations between input

and output structures developed in McCarthy and Prince (1995). The need for a theory of

correspondence to maintain the accountability necessarily follows from the derestriction of Gen,

and by incorporating it into the discussion we can demonstrate more comprehensively how the

argument against Gen goes through.

 As soon as McCarthy and Prince (1994) propose the provision of epenthetic segment

structure, it becomes necessary that a distinction be made between segments originating in the

input and the potential epenthetic segments. These are discriminated by a constraint MSEG in

(33) or in the reformulation by McCarthy and Prince (1995), DEP, defined in (37) below.

Augmenting the earlier tableau for Makassarese epenthesis, (36) shows that the candidate

15 Heck et al (2002) argue that in syntax – unlike phonology – accountability to an input and deriving the candidate
set from an input are both unnecessary.

 66

structure jamalal may be arrived at by considering the stem jamal to be augmented in two

possible ways, with different consequences against the additional constraint of CONTIGUITY.

(36) (Augmented version of (32))

 /jamal/ CONTIGUITY CODA-COND ALIGNR FINAL-C DEP NO-NAS

�jamal | ��� * **

 jamal |���� * ** *!

 jamal | at *! * **

 jamal | al *! * **

 jama|la|l *! * **

(37) DEP A segment in the output must have a correspondent in the input.

 CONTIGUITY The portion of the output string standing in correspondence

 forms a contiguous string.

Thus, the relation between a potential output and the input is not necessarily absolute, and

various alternative relationships may be subjected to evaluation against Faithfulness constraints

like MAX, DEP, and CONTIGUITY (McCarthy and Prince 1995). Furthermore, however, we may

claim that the system of correspondence relations will leave generation redundant by taking over

the job of relating the output back to the input which was originally an auxiliary benefit of a

restrictive Gen.

 Consider how the correspondence relations are assigned. Take the string /blurk/. /blurk/,

like any other string, is guaranteed to appear on every tableau, as illustrated in (38). The /blurk/

example is taken by McCarthy and Prince (1995:14) to “emphasise the richness of Gen”, but of

 67

course that “richness” is a loss of theoretical content, because it means that Gen plays no role in

selecting candidate sets.

(38)

 b l u r k

For the particular tableau associated with an input structure /blik/, say, the correspondence

relations considered along with the candidate string /blurk/ are all and only those which relate the

contents of /blurk/ to the contents of /blik/. The first six cases of /blurk/ in (39), where

correspondence relations are illustrated by means of numerical co-indexing, are some of the

many relations that will be evaluated for the input /blik/, but the correspondence relation given

for the starred string, corresponding to, say, /biaiiniii/, will not be evaluated.

(39)

/b1l2i3k4/

b1l2u3rk4

b 1l2u3r4k

b1l3urk4

b1l2urk

b4l2u1r3k

b l u r k

...

*biluiiriiik

 68

This means that although the output structures themselves that appear on tableaux are not a

function of the input structure, the assignment of correspondence is a function of the input

structure. A correspondence relation must correspond to the input, so the input is the decisive

factor in deciding what is and is not an acceptable correspondence relation, even though it is not

a factor in deciding what is and is not an acceptable output structure.16

 Finally, we must crucially note that the argument thus far has been confined, by starting

assumption, only to phonological structure. Although the phonological structure of candidate

outputs can vary without limit, the morphological structure of the input is often assumed not to

vary for the candidate output structures. Thus it could be objected that a Gen function freely

generates phonological structure while holding other linguistic structure invariant. However, Gen

is not necessary here either: a simple alternative is to assume that morphological and syntactic

structure is constant across input/output correspondence relations. Thus, in tableau (36),

candidate jama|la|l has a morphological Stem jama...l because those segments correspond to an

input sequence identified as a Stem. Or we could assume that morphological (and syntactic)

structure can be assigned freely in candidate structures, and evaluated against constraints. After

all, optimality theory is offered as a theory of overall grammar, not merely phonology. Either

way, the argument against Gen is not contingent on the simplificatory confinement to

phonological structure, and goes through: if correspondence relations are assigned between

possible outputs and the input, there is no motivation left for actually generating the outputs from

the input.

16 Of course, we could call the function that assigns correspondences between inputs and possible structures ’Gen’ if
we wish, as McCarthy and Prince (1995:263) do when they say "one can think of Gen as supplying correspondence
relations between S1 [the first string of the correspondence, here the input - RN] and all possible structures over
some alphabet", as suggested to them by others. But how is one to think about Gen? Gen is (or was) short for
’generator’, and there is now no generation of structure from the underlying structure as there is in rule-based theory
and as there is in the theory of Prince and Smolensky (1993), which came prior to the liberalisation which rendered
generation vacuous.

 69

2.3.5 Optimality Theory Without Gen

 The origin of information on a tableau is now summed up in (40):

(40)

representational primitives and principles of combination

 �

set of possible structures P

 � � Constraint set Con

input in � P, outputs outi � P Ranking <<

 � � �

/ in / C1 C2 C3 …

{…� in, outi, Rj �…}

Rj is some correspondence

relation between in and outi

The output structures that appear on the tableau are not derived from the input. Both come from

the set of possible structures, which itself comes from the basic principles of what (phonological)

structure looks like. The candidates themselves have a triple form, consisting of the input

structure, a potential structure (from P), and one of the logically possible correspondence

relations between that output and the input. The presence of the input structure and the

correspondence relation within the candidate is necessary for evaluating the preservation of

 70

properties of the input in the output. For example, evaluating the preservation of linear order of

elements requires reference to input order.

 We have shown that, although it would not be viable merely to cancel the Gen function

from the usual Gen-Eval scheme without losing all connection between the input and output, the

use of correspondence relations between the input structure and the possible output structures

enables an Eval function to stand without Gen:

(41) Eval ({ �in,outi,Rj�����outi � P, �Rj � in�outi }) = { �in,outk,Rl� }

For each input, evaluation of all possible ‘input,output,correspondence’ triple forms

delivers some triple (or triples) as optimal.

In this way, Optimality Theory may abandon the generation of structure from structure and shift

the explanatory burden totally, not merely primarily, over to evaluation. This brings the theory

closer to the actual practice of optimality-theoretic analysis, since, following the liberalisation of

Gen by McCarthy and Prince (1995), crucial recourses to Gen are not made anyway. Everything

is accounted for, in an alternative formal system – an evaluation system.17 It now remains to

specify more fully how a candidate is evaluated as optimal in the evaluation system.

17 This is not achieved by Russell (1997) who, while recognising that candidate sets are not a function of inputs,
assumes that they are "primitive" (Russell 1997:115). However, it is important that the infinite candidate sets are not
merely received as unanalysable, unending lists, but are entirely generated from an apt finite definition of
phonological representations (Bird 1995). The difference between generating candidates from an input and
generating them from the axioms of phonological structure is akin to generating the set of all positive integers from
the positive integer ’1’ under the operation of addition, and generating them by constructing the number system in set
theory.

 71

2.4 Evaluation in the Optimality Framework

 With generation being shown non-essential to the optimality framework, we now flesh

out the form of optimality-theoretic evaluation in this section. We then have a pure evaluation

system which can be compared to the generation system of 2.1.

2.4.1 Optimality

 In Optimality Theory, the surface form is selected from a number of potential candidates

by an evaluation which places them in an order of relative harmony, of which the most harmonic

is said to be the ’optimal’ one. A tableau for representing this information takes the form outlined

in (42) below, and we shall use its contents to explicate the form of optimality. The candidates,

whose internal triple structure was discussed in 2.3.5, are for present purposes abbreviated to

atomic alphabet symbols. All violations of constraints posted on the tableau are shown (by ’*’);

just some of them are marked as crucial (by ’!’).

(42)

 C1 C2 C3 C4

 a **! **

 b *! * *

 c *! *

 d **! *

 e * *!

� f *

 g *! *

 h *!

 72

Each constraint Ci is a function associating a string of violation marks (*) to each candidate:

Ci(x) is the string of marks associated with candidate x. Candidates are then ordered as to how

many violation marks they incur:

(43) Let x and y be candidates, and Ci a constraint.

 x �Ci y iff Ci(x) is longer than Ci(y)

 x is less harmonic than y with respect to constraint Ci if and only if x violates Ci more

times than y does.

Some pairs of candidates are not so ordered. For example, in (42) f and g are not discriminated

by constraint C1. Such pairs are equally harmonic or ’iso-harmonic’ (f�g)18. The candidates fall

into ordered equivalence classes of iso-harmony, {candidates with no marks} � {candidates with

one mark} � {candidates with two marks} � ...etc.

 Moving from column to column, the evaluation is cumulative. The higher-ranked

constraints have priority in discriminating between candidates, and the lower-ranked constraints

discriminate more and more candidates. Some candidates fair better than others, and only the

best survive, the others suffering crucial violations (*!) and they are shaded off for all subsequent

columns. The overall harmonic ordering of the candidates in (42) is laid out in (44). Each line in

(44) corresponds to evaluation against a portion of the hierarchy. The most harmonic candidates,

which escape crucial constraint violations, are given in bold on the left.

18A reflexive, symmetric, transitive relation - an equivalence relation. The axiomatic properties are easily verifiable
by consideration of the equivalence of having the same length of violation marks.

 73

(44)

Portion of hierarchy considered Overall relative harmonies

 abcdefgh

C1 cdefg � bh � a

C1>>C2 def � cg � bh � a

C1>>C2>>C3 ef � d � cg � bh � a

C1>>C2>>C3>>C4 f � e � d � cg � h � b � a

Some harmony ratings are crucial to the non-optimality of the poorer-rated candidate: b �C1 c, b

is crucially violated by C1, c is not. Some are irrelevant to optimality: b �C4 h: b does have more

C4 marks than h, but both crucially violate C1 anyway), and some are overridden (b �C4 a: b has

more C4 marks – a has none, but a has more C1 marks and C1 is a higher constraint).

 The ordering of relative harmony imposed by one constraint may be defined as in (45).

(45) Let ‘Cands’ be the set of candidates, and Ci a constraint. Then

 EvalCi(Cands) =def { �x,y� x,y e Cands such that Ci(x) is longer than Ci(y) }

EvalCi(Cands) is the ordering of candidates in relative harmony imposed by Ci.

Evaluation with respect to an entire constraint hierarchy � only admits ratings which do not

contradict those imposed by higher-ranked constraints. This is defined in (46):

 74

(46) Let � be a hierarchy of n ranked constraints C1, C2, …, Cn

 Eval* = Eval(n), where

 Eval(i) = def �EvalC1 if i=1

 �Eval(i-1) � EvalCi/Eval(i-1) if i>1

Eval* accumulates from each constraint Ci any discrimination in harmony between

candidates not garnered from the higher constraints C1,…,C(i-1).

The most harmonic candidates at each stage, which escape crucial violations in (42) and are

presented in bold in (43), may be picked out as in (47):19

(47) (i) For each i, max(Eval(i)) = { a : ��b such that �b,a��Eval(i)}

max(Eval(i)) is the subset of maximally harmonic candidates with respect to the hierarchy

C1,…,Ci

 (ii) max(Eval*) = { a : ��b such that �b,a��Eval* }

max(Eval*) is the subset of maximally harmonic candidates with respect to the entire

hierarchy – i.e. the optimal candidate(s).

So while the derivational framework places structures in a sequence of which the end is the

surface form, an OT grammar specifies harmony relationships between structures, of which the

maximally harmonic candidate, or optimal candidate, contains the surface form for the

underlying, input, form. How different harmony is from derivation remains to be examined.

19An alternative formulation is where filters for each of the constraints successively cream off the best of the best
until all of the filters have been used and we are left with the optimal form (Eisner 1997a).

 75

2.4.2 Optimality-Theoretic Constraints

 Optimality-theoretic constraints are violable, but violation is minimal (McCarthy and

Prince 1994:336). This appeals to a notion of degree of violation, spelt out by violation marks or

the closely related harmony rating (no marks - rated top, 1 mark - rated next, etc.). An optimality-

theoretic constraint C is a function from candidates (two structures in correspondence) to strings

of *’s. A fundamental issue is how to define linguistic constraints which register violation marks

against candidates for each point at which they fail to meet some linguistic requirement.

 In Optimality Theory, phonology is seen in terms of interactions among two kinds of

constraints, Faithfulness constraints and Markedness constraints (Prince 1997a, McCarthy 2002).

Faithfulness constraints require the correspondence relation between the two structures to

conform to some property – essentially keeping input and output alike in some particular respect.

Markedness constraints place requirements particularly on output structures themselves.

Although other kinds of constraints have sometimes been countenanced (e.g. Archangeli and

Suzuki 1997, McCarthy 1999a), they fall outside the core proposals of Optimality Theory and we

shall leave them aside here.

 We adopt the autosegmental view of phonological representations as graphs (Goldsmith

1976, Coleman and Local 1991, Bird 1995) and assume that correspondence relations exist

between these graphs. In particular, phonological representations consist of several nodes which

occupy a number of tiers in which all the nodes are of the same sort, a particular feature, or

segmental root node, etc. On each tier the nodes are ordered, and nodes on different tiers are

related by association (associations are also ordered). In the correspondence relation, the

elements (nodes) on a particular tier in the input representation take correspondents on the

equivalent tier in the output representation. In (48) we give a simple example of coindexing

between input and output for tonal and melodic tiers.

 76

(48) Input: Output:

 Ha Ha
 /i \ii /i \ii
 b1a2ng3a4 b1a2ng3a4

However, the “melodic tier” itself decomposes into a series of tiers for the segmental root and the

various individual features. This view of correspondence then follows Lombardi (2001) and Zoll

(1998) in assuming that Faithfulness constraints exist for all the feature tiers used in

phonological representation.20 Each feature tier � will have the following Faithfulness

constraints:

(49)

a. MAXIMALITYW (MAXW),

Every element in the input has a correspondent in the output.

b. DEPENDENCEW (DEPW)

Every element in the output has a correspondent in the input.

c. IDENTITYW (IDENTW)

Correspondent elements have identical values.

d. LINEARITYW

The order of input elements is preserved among their output correspondents.

e. INTEGRITYW

No element in the input has more than one correspondent in the output.

f. UNIFORMITYW

No element in the input has more than one correspondent in the input.

20 However, we should not postulate Faithfulness constraints on prosodic constituents (syllable, foot, etc.), since no
such effects are observed (McCarthy 2003).

 77

These constraints specify all the recognisable natural properties in the mathematics of relations.

If all these properties are met on each tier within a representation and the output is fully faithful

to the input, then we have an identity isomorphism between the tier structure in the input and the

tier structure in the output. If on the other hand some property is not met, violation marks will be

awarded for each exception to the property. For example, MAX will award violation marks for

each input element that has no correspondent in the output. Further Faithfulness constraints may

have linguistic motivation. Thus, McCarthy and Prince (1995) propose CONTIGUITY constraints

(requiring preservation of the word- or morpheme-internal sequence without insertion or

deletion) and ANCHOR constraints (requiring retention of initial and final elements).

 We may now turn to Markedness constraints. Some Markedness constraints are defined

by a structural configuration. Examples are given in (50).

(50) LO/TR ’No [+low] feature is accompanied by a [+ATR] feature’

 NONFINALITY ’No prosodic word ends with a foot edge’

 NOGEMINATES ‘No segmental root may be associated to two timing units’

 OCPW ‘No adjacent identical elements on tier �’

Candidates incur violation marks each time the output structure (not the input structure) contains

this configuration, so with LO/TR, every instance in an output structure where [+low] and

[+ATR] coincide warrants a violation mark. Other Markedness constraints have an implicational

form, requiring that if some structural node (or possibly sub-configuration of nodes) is present, it

is accompanied by another. Examples are given in (51):

 78

(51) NASVOI ’every nasal is accompanied by voicing’

 ALIGN(PrWd,R,�,R) ’the right edge of every word coincides

 with the right edge of a syllable’

 ONSET ’every syllable has an onset’

Every time the implication fails in the output structure, a violation mark is given. Thus, for

ONSET, each syllable in an output structure that does not have an onset warrants a violation

mark. These two simple schemes, negation and implication of certain structural configurations,

cover typical proposals for Markedness constraints.21

 Some Markedness constraints have been given a powerful facility of awarding different

kinds of violation mark, some more severe than others. This would complicate the formulation of

harmony evaluation given here; however, we would argue that this facility is superfluous. There

are two contexts in which it has arisen. The first is in connection with natural phonological

scales. HNUC (Prince and Smolensky 1993) marks syllable nuclei with increasing severity the

lower down the sonority scale they are (low vowels > mid vowels > high vowels > approximants

> nasals > voiced fricatives > voiceless fricatives > voiced plosives > voiceless plosives).

However, as Prince and Smolensky (1993:81) observe, this can be replaced with a finite series of

constraints for each sonority level: *PEAK/voiceless plosives >> *PEAK/voiced plosives >>

*PEAK/voiceless fricatives >> … It is a general result that any constraint with a finite set of

violation marks may be so reduced (Ellison 1994). This is shown in the text box below.

21 Eisner (1997b) goes further and proposes that OT constraints be limited to specifying a negative or implicational
relationship simply between a pair of structural elements or edges of constituents, such as ‘syllable’ and ‘onset’,or
‘low’ and ‘ATR’.

 79

The second place where severity of violation has been used does not give a finite hierarchy of

marks. The Tagalog affix -um- appears as a prefix as in um-aral ‘teach’ provided that m is not

parsed in a syllable coda position (V__.C). If this cannot be met, then it infixes as close to the left

as possible: gr-um-adwet *um-gradwet ‘graduate’ (McCarthy and Prince 1993a:101). The pattern

is analysed using the constraint NOCODA, 'every syllable has no coda' ranked above

ALIGN([um]Af,L,Stem,L), 'the left edge of every um affix coincides with the left edge of a stem'

(the root and um affix together constitute a stem). A tableau for the infixed Tagalog form for

'graduate' is given in (52).

Reduction of a finite violation mark hierarchy:

Suppose a constraint C produces N different kinds of marks, m1,m2,...,mN, in

increasing order of severity (m1�m2�...�mN);

for each candidate c, C determines a list C(c) of marks, concatenations not of *'s

but of {mi}(1�i�N).

To separate out each kind of mark, let f1(C(c)) be the string containing only the

marks m1 from C(c), and define fi, i=2,..,N similarly;

C can be replaced by binary constraints C1,C2,...,CN such that Ci(c)=fi(C(c)), so that

each mark type is taken over by a separate constraint. Just as a mark m2 is more

costly to a candidate than a mark m1, violation of C2 is concomitantly more costly

than C1, and adoption of the ranking C2>>C1 captures precisely this. In general, the

mark hierarchy m1�m2�...�mN is converted to the ranking CN>>...>>C1, a

hierarchy of constraints each assigning strings of a single mark.

 80

(52)

/um/,/gradwet/ NOCODA ALIGN-um

a. [um.grad.wet. ***!

b. [g-um.rad.wet. ***! *(1)

c.�[gr-u.mad.wet. ** *(2)

d. [grad.w-u.met. ** *(5)!

In candidates b.,c.,d. the affix is misaligned and so violates ALIGN-um. But it does so with

increasing severity because of the increasing distance from the left edge of the stem. Once

candidates a.,b. are eliminated by the other constraint NOCODA, the choice between c. and d. is

settled purely on the fact that the misalignment in c. is less severe than that in d. This cannot be

replaced by a hierarchy of constraints because the distance of misalignment depends on the

number of segments in a stem, and this is not bounded – phonological structures are of arbitrarily

length. There is however, another solution, namely that we reformulate the constraint as a

generalisation about intervening material (Ellison 1994, Zoll 1998):

(53) NOINTERVENING:Segments([um],L,Stem,L) = 'Given an um affix, there is a stem such

that no segments intervene between the left edges of the two'

This simply associates two violation marks * * to /gr-u.mad.wet./ for the segments gr and five

violation marks * * * * * to /grad.w-u.met./ for the segments gradw, in the normal way. While

Ellison (1994) and Zoll (1998) appear to implicitly assume such constraints generalise over

segments, other NOINTERVENING constraints might generalise over another structural entity,

 81

such as the syllable, the feature [+nasal], etc.22 This reformulation shows that constraints of

alignment which incorporate marks of unbounded severity do reduce to constraints which use

*’s, again preserving the formalisation of harmony evaluation already given.

 In general, as we showed, a finite hierarchy of marks can be reconstructed with

constraints employing a single string of marks; the difficulty comes when there is no bound on

the possible severity of violation, since one could not then generate a set of constraints to replace

the degrees of severity. The source of motivation for such a constraint is limited, however: any

set of marks motivated by scales within substantive phonological theory will be finite, e.g.

prosodic hierarchy, feature dependencies, sonority hierarchy, markedness hierarchies. Phonetic

scales referring to articulatory or acoustic dimensions are infinite, but in practice it appears that

only a certain list of threshold values are relevant to phonological analysis (e.g. Kirchner 1996).

Unboundedness in phonology arises instead in the arbitrarily large size of phonological

structures. This offers the possibility that constraints may have a severity of violation that

increases with the size of a structure. Such constraints (such as constraints of constituent

alignment) must have a unit of measurement of severity such as the segment or syllable. We

know that alignment constraints of this kind reduce to generalisations on the structural element

used as the unit of measurement, and other generalisations of similar complexity (unreported, but

perhaps requirements of adjacency or licensing are abstract possibilities) are likely to reduce the

same way. These considerations leave the window of plausible constraints with irreducible

unbounded sets of violation marks vanishingly small.

22 McCarthy (2002b) proposes that it is prosodic constituents such as the syllable or foot that are prohibited from
intervening between two boundaries in a representation.

 82

2.4.3 The Structure of Optimality Theoretic Grammar

 The specification in (54) now outlines optimality-theoretic grammars.

(54) An Optimality-theoretic grammar is a quintuple �P, Un, Corr, �, Eval* � where:

 P is the set of possible phonological structures

 Un is a finite set of phonological structures

Corr: in��in,P,in�P� is a function which takes a phonological structure in as an input and

associates with it triples �in,p,in�p� for all phonological structures p and for each p, all

correspondence relations between in and p. These are the candidates for a phonological

input.

� = � CON, << �, a set of constraints CON with an ordering <<, where the constraints are

functions which associate a string of *’s to triples �in,p,in�p�.

Eval* defines an ordering � on triples �in,p,in�p� from �.

This means that surface forms are determined as follows. For any underlying representation un in

Un:

�The candidates are the set of triples given by Corr(un) – all structures in all correspondences to

un

�The candidate triples are ordered by Eval*(Corr(un)) – the harmony scale

�The optimal triple (or triples) is picked out by max(Eval*(Corr(un)))

�The second member of this triple (or triples) is the corresponding surface representation.

 83

2.5 Programme For Structural Comparison

 We have a rule-based generation system in the derivational framework (constraints being

underformalised and eliminable) and a constraint-based evaluation system in the optimality

framework (generation being redundant).

 A generation system and an evaluation system which generate the same surface forms

from the same underlying forms describe the same function. A generation system and evaluation

system which describe the same function are comparable in structure at three points:

(56) Rule Order Constraint Ranking

Structural Changes Faithfulness Violations

 Derivational Sequences Harmony Scales

Rules are comparable to Constraints in that Structural Descriptions and Structural Changes of

rules are comparable with Markedness / Faithfulness interactions, and the fact that an ordering

relation is defined on both rules and constraints. And the derivational sequences of structures, the

last of which is the surface form, is comparable with the relative harmony of structures, of which

the most harmonic is the surface form. These three structural analogies provide the basis for

comparative studies of the frameworks, which we will pursue in the next three chapters.

